Skip to main content
Log in

Parasites of fish larvae: do they follow metabolic energetic laws?

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Eumetazoan parasites in fish larvae normally exhibit large body sizes relative to their hosts. This observation raises a question about the potential effects that parasites might have on small fish. We indirectly evaluated this question using energetic metabolic laws based on body volume and the parasite densities. We compared the biovolume as well as the numeric and volumetric densities of parasites over the host body volume of larval and juvenile-adult fish and the average of these parasitological descriptors for castrator parasites and the parasites found in the fish studied here. We collected 5266 fish larvae using nearshore zooplankton sampling and 1556 juveniles and adult fish from intertidal rocky pools in central Chile. We considered only the parasitized hosts: 482 fish larvae and 629 juvenile-adult fish. We obtained 31 fish species; 14 species were in both plankton and intertidal zones. Fish larvae exhibited a significantly smaller biovolume but larger numeric and volumetric densities of parasites than juvenile-adult fish. Therefore, fish larvae showed a large proportion of parasite biovolume per unit of body host (cm3). However, the general scaling of parasitological descriptors and host body volume were similar between larvae and juvenile-adult fish. The ratio between the biovolume of parasites and the host body volume in fish larvae was similar to the proportion observed in castrator parasites. Furthermore, the ratios were different from those of juvenile-adult fish, which suggests that the presence of parasites implies a high energetic cost for fish larvae that would diminish the fitness of these small hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adlard RD, Lester RJG (1994) Dynamics of the interaction between the parasitic isopod, Anilocra pomacentri, and the coral reef fish, Chromis nitida. Parasitology 109:311–324

    Article  PubMed  Google Scholar 

  • Anderson G, Dale W (1981) Probopyrus pandalicola (Packard) (Isopoda: Epicaridae): morphology and development of larvae in culture. Crustaceana 41:143–161

    Article  Google Scholar 

  • Astete-Espinoza LP, Cáceres CW (2000) Efecto del parasitismo del isópodo bopírido Ionella agassizi (Isopoda: Epicaridea) (Bornnier, 1900) sobre la fisiología nutricional del nape Neotrypaeauncinata (M. Edwards, 1837) (Decapoda: Thalassinidea). Rev Chil Hist Nat 73:243–252. doi:10.4067/S0716-078X2000000200003

    Article  Google Scholar 

  • Azevedo J, Da Silva L, Silveira C, Dansa-Petretski M, Wille N (2006) Infestation pattern and parasitic castration of the crustacean Riggia paranensis (Crustacea: Cymothoidea) on the fresh water fish Cyphocharax gilbert (Teleostei: Curimatidae). Neotrop Ichthyol 4(3):363–369. doi:10.1590/S1679-62252006000300008

    Article  Google Scholar 

  • Balbontín F, Pérez R (1979) Modalidad de postura, huevos y estados larvales de Hypsoblennius sordidus (Bennett) en la Bahía de Valparaíso (Blenniidae: Perciformes). Rev Biol Mar 16(3):311–318

    Google Scholar 

  • Balbuena JA, Karlsbakk E, Kvensenth AM, Saksvik M, Nylund A (2000) Growth and emigration of the third-stage larvae of Hysterotylacium aduncum (Nematoda: Anisakidae) in larval herring Clupea harengus. J Parasitol 86(6):1271–1275

    Article  CAS  PubMed  Google Scholar 

  • Bourque J-F, Dibson JJ, Ryan DAJ, Marcogliese DJ (2006) Cestode parasitism as a regulator of early life-history survival in an estuary population of rainbow smelt Osmerus mordax. Mar Ecol Prog Ser 314:295–307. doi:10.3354/meps314295

    Article  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  • Calado R, Bartilotti C, Narciso L (2005) Short report on the effect of a parasitic isopod on the reproductive performance of a shrimp. J Exp Mar Biol Ecol 321(1):13–18. doi:10.1016/j.jembe.2004.12.038

    Article  Google Scholar 

  • Calado R, Bartilotti C, Goy J, Dinis M (2008) Parasitic castration of the stenopodid shrimp Stenopus hispidus (Decapoda: Stenopodidae) induced by the bopyrid isopod Argeiopsis inhacae (Isopoda: Bopyridae). J Mar Biol Assoc UK 88(2):307–309. doi:10.1017/S0025315408000684

    Article  Google Scholar 

  • Cañete J, Cárdenas C, Oyarzún S, Plana J, Palacios M, Santana M (2008) Pseudione tuberculata Richardson, 1904 (Isopoda: Bopyridae): a parasite of juveniles of the king crab Lithodes santolla (Molina, 1782) (Anomura: Lithodidae) in the Magellan Strait, Chile. Rev Biol Mar Oceanogr 43(2):265–274. doi:10.4067/S0718-19572008000200005

    Article  Google Scholar 

  • Castro R, Muñoz G (2011) Two new species of Colobomatus (Copepoda: Phylichthydae) parasitic on coastal fishes in Chilean waters. Crustaceana 84(4):385–400. doi:10.1163/001121611X555417

    Article  Google Scholar 

  • Christensen A, Kanneworff B (1965) Life history and biology of Kronborgia amphipodicola Christensen & Kanneworff (Turbellaria, Neorhabdocoela). Ophelia 2(2):237–252. doi:10.1080/00785326.1965.10409602

    Article  Google Scholar 

  • Cribb TH, Pichelin S, Dufour V, Bray RA, Chauvet C, Faliex E, Galzin R, Lo CM, Lo-Yat A, Morand S, Rigby MC, Sasal P (2000) Parasites of recruiting coral fish reef larvae in new Caledonia. Int J Parasitol 30:1445–1451. doi:10.1016/S0020-7519(00)00121-1

    Article  CAS  PubMed  Google Scholar 

  • Damuth J (1981) Population density and body size in mammals. Nature 290:699–700. doi:10.1038/290699a0

    Article  Google Scholar 

  • Derting TL, Compton S (2003) Immune response, not immune maintenance, is energetically costly in wild white footed mice (Peromyscus leucopus). Physiol Biochem Zool 76(5):744–752

    Article  PubMed  Google Scholar 

  • Felley SM, Vecchione ML, Hare SGF (1987) Incidence of ectoparasitic copepods on ichthyoplankton. Copeia 3:778–782

    Article  Google Scholar 

  • Fogelman R, Kuris A, Grutter A (2009) Parasitic castration of a vertebrate: Effect of the cymothoid isopod, Anilocra apogonae, on the five-lined cardinalfish, Cheilodipterus quinquelineatus. Int J Parasitol 39(5):577–583. doi:10.1016/j.ijpara.2008.10.013

    Article  PubMed  Google Scholar 

  • Freitak D, Ots I, Vanatoa A, Horak P (2003) Immune response is energetically costly in white cabbage butterfly pupae. Proc R Soc Lond B (Suppl) 270:S220–S222. doi:10.1098/rbsl.2003.0069

    Article  Google Scholar 

  • George-Nascimento M, Bustos J (2006) Efectos del rizocéfalo Loxothylacus armatus (Cirripedia: Rhizocephala) en el cengrejo Paraxanthus barbiger (Decapoda: Brachyura) en Chile. Rev Chil Hist Nat 79:147–154

    Article  Google Scholar 

  • George-Nascimento M, Muñoz G, Marquet P, Poulin R (2004) Testing the energetic equivalence rule with helminth endoparasites of vertebrates. Ecol Lett 7:527–531. doi:10.1111/j.1461-0248.2004.00609.x

    Article  Google Scholar 

  • Glazier DS (2005) Beyond the ‘3/4-power law’: variation in the intra- and interspecific scaling of metabolic rate in animals. Biol Rev 80:611–662. doi:10.1017/S1464793105006834

    Article  PubMed  Google Scholar 

  • Glazier DS (2006) The 3/4-power law is not universal: evolution of isometric, ontogenetic metabolic scaling in pelagic animals. Bioscience 56:325–332. doi:10.1641/0006-3568(2006)56[325:TPLINU]2.0.CO;2

    Article  Google Scholar 

  • Glazier DS (2008) Effects of metabolic level on the body size scaling of metabolic rate in birds and mammals. Proc R Soc B 275. doi: 10.1098/rspb.2008.0118

  • Grutter AS, Cribb TH, McCallum H, Pickering JL, McCornick MI (2010) Effects of parasite on larval and juvenile stages of the coral reef fish Pomacentrus moluccensis. Coral Reefs 29(1):31–40. doi:10.1007/s00338-009-0561-1

    Article  Google Scholar 

  • Hechinger RF (2013) A metabolic and body-size scaling framework for parasite within-host abundance, biomass, and energy flux. Am Nat 182(2):234–224. doi:10.1086/670820

    Article  PubMed  Google Scholar 

  • Hechinger RF (2015) Parasites help find universal ecological rules. Proc Natl Acad Sci 112:1656–1657. doi:10.1073/pnas.1423785112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hechinger RF, Lafferty KD, Dobson AP, Brown JH, Kuris AM (2011) A common scaling rule for the abundance, energetics, and productivity of parasitic and free-living species. Science 333:445–448. doi:10.1126/science.1204337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heins D, Baker J (2010) Castration of female ninespine stickleback by the pseudophyllidean cestode Schistocephalus pungitii: Evolutionary significance and underlying mechanism. J Parasitol 96(1):206–208. doi:10.1645/GE-2162.1

    Article  PubMed  Google Scholar 

  • Herrera G (1984a) Parasitismo de juveniles de copepodos caligoideos sobre larvas de peces de la Bahía Coliumo (36 32′S; 75 57′W), Chile. Biol Pesq 13:31–38

    Google Scholar 

  • Herrera G (1984b) Descripción de estados post-embrionales de Ophiogobius jenynsi Hoese 1976 (Gobiidae, Blennioidei). Rev Biol Mar 20(2):59–168

    Google Scholar 

  • Herrera G (1990) Incidence of anchovy (Engraulis ringens) larvae parasitized by caligid developmental stages. Bull Mar Sci 47:571–575

  • Herrera GA, Llanos-Rivera A, Landaeta MF (2007) Larvae of the sand stargazer Sindoscopus australis and notes on the development of Dactyloscopidae (Perciformes: Blennioidei). Zootaxa 1401:63–68

    Google Scholar 

  • Izquierdo MS, Fernández-Palacios H, Tacon AGJ (2001) Effect of broodstock nutrition on reproductive performance of fish. Aquaculture 197(1-4):25–42. doi:10.1016/S0044-8486(01)00581-6

    Article  Google Scholar 

  • King SD, Cone DK (2009) Infections of Dactylogyrus pectenatus (Monogenea: Dactylogyridae) on Larvae of Pimephales promelas (Teleostei: Cyprinidae) in Scott Lake, Ontario, Canada. Comp Parasitol 76(1):110–112. doi:10.1654/4370.1

    Article  Google Scholar 

  • Lacerda ACF, Santin M, Takemoto RM, Pavanelli GC, Bialetzki A, Tavernari FC (2009) Helminths parasitizing larval fish from Pantanal, Brazil. J Helminthol 83:51–55. doi:10.1017/S0022149X08092171

    Article  CAS  PubMed  Google Scholar 

  • Lützen J, Jespersen A (1992) A study of the morphology and biology of Thompsonia littoralis (Crustacea: Cirripedia: Rhizocephala). Acta Zool 73(1):1–23. doi:10.1111/j.1463-6395.1992.tb00944.x

    Article  Google Scholar 

  • MacKenzie K (1974) Immature digeneans from the alimentary tract of larval and juvenile pelagic stages of haddock, Melanogrammus aeglefinus (L.). J Fish Biol 6(2):103–106. doi:10.1111/j.1095-8649.1974.tb04529.x

    Article  Google Scholar 

  • Mahon R (1976) Effect of the cestode Ligula intestinalis on spottail shiners, Notropis hudsonius. Can J Zool 54(12):2227–2229. doi:10.1139/z76-254

    Article  CAS  PubMed  Google Scholar 

  • McDermontt J (1991) Incidence and host parasite relationship of Leidya bimini in the brachyuran crab Pachygrapsus transversus from Bermuda. Ophelia 33(2):71–95. doi:10.1080/00785326.1991.10429731

    Article  Google Scholar 

  • Muñoz G (1997) Primer registro de isópodos bopyridos (Isopoda: Epicadirea) en el nape Notiax brachyophthalma (M. Edwards, 1870) y algunos aspectos de la relación hospedador-parasito. Gayana Oceanol 5(1):33–39

    Google Scholar 

  • Muñoz G (2010) A new species of Pseudodelphis (Dracunculoidea: Guyanemidae) in the intertidal fish Scartichthys viridis (Blenniidae) from Central Chile. J Parasitol 96(1):152–156. doi:10.1645/GE-2163.1

    Article  PubMed  Google Scholar 

  • Muñoz G, Bott N (2011) A new species of Prosorhynchoides (Trematoda, Bucephalidae) from the intertidal rocky zone of central Chile. Acta Parasitol 56(2):140–146. doi:10.2478/s11686-011-0017-y

    Article  Google Scholar 

  • Muñoz G, Cortés Y (2009) Parasite communities of a fish assemblage from the intertidal rocky zone of central Chile: Similarity and host specificity between temporal and resident fish. Parasitology 136:1291–1303. doi:10.1017/S0031182009990758

    Article  PubMed  Google Scholar 

  • Muñoz G, George-Nascimento M (1999) Efectos reproductivos recíprocos en la simbiosis entre napes (Decapoda: Thalassinidea) e isópodos bopíridos (Isopoda: Epicaridea) en Lenga, Chile. Rev Chil Hist Nat 72:49–56

    Google Scholar 

  • Muñoz G, Landaeta MF, Palacios- Fuentes P, López Z, González MT (2015) Identification of parasites in fish larvae from the coast of Chile: morphological and molecular analyses. Folia Parasitol 62:029. doi:10.14411/fp2015.029

    Article  Google Scholar 

  • Nielson JD, Perry RI, Scott JS, Valerio P (1987) Interactions of caligid ectoparasites and juvenile gadids on Georges Bank. Mar Ecol Prog Ser 39:221–232

    Article  Google Scholar 

  • Palacios-Fuentes P, Landaeta MF, Muñoz G, Plaza G, Ojeda FP (2012) The effects of a parasitic copepod on the recent larval growth of a fish inhabiting rocky coasts. Parasitol Res 111(4):1661–1671. doi:10.1007/s00436-012-3005-8

    Article  PubMed  Google Scholar 

  • Palacios-Fuentes P, Landaeta MF, González MT, Plaza G, Ojeda FP, Muñoz G (2015) Is ectoparasite burden related to host density? Evidence from nearshore fish larvae off the coast of central Chile. Aquat Ecol 49:91–98. doi:10.1007/s10452-015-9507-6

    Article  Google Scholar 

  • Pérez R (1979) Desarrollo postembrionario de Tripterygion chilensis Cancino 1955, en la Bahía de Valparaíso (Tripterygiidae: Perciformes). Rev Biol Mar 16(3):319–329

    Google Scholar 

  • Pérez R (1981) Desarrollo embrionario y larval de los pejesapos Sicyases sanguineus y Gobiesox marmoratus en la Bahía de Valparaíso, Chile, con notas sobre su reproducción (Gobiesocidae: Pisces). Investig Mar 9(1-2):1–24

    Google Scholar 

  • Petrić M, Ferri J, Mladineo I (2010) Growth and reproduction of Munida rutllanti (Decapoda: Anomura: Galatheidae) and impact of parasitism by Pleurocrypta sp. (Isopoda: Bopyridae) in the Adriatic Sea. J. Mar Biol Assoc UK 90(7):1395–1404. doi:10.1017/S0025315409991615

    Article  Google Scholar 

  • Poulin R, George-Nascimento M (2007) The scaling of total parasite biomass with host body mass. Int J Parasitol 37(3-4):359–64. doi:10.1016/j.ijpara.2006.11.009

    Article  PubMed  Google Scholar 

  • Rebolledo M, Landaeta MF, Muñoz G (2014) Efecto del endoparásito Prosorhynchoides sp. (Trematoda: Bucephalidae) en la capacidad de nado sostenido del baunco Girella laevifrons.Rev. Biol Mar Oceanogr 49(3):625–630. doi:10.4067/S0718-19572014000300020

    Article  Google Scholar 

  • Rosenthal H (1967) Parasites in larvae of the herring (Clupea harengus L.) fed with wild plankton. Mar Biol 1:10–15. doi:10.1007/BF00346689

    Article  Google Scholar 

  • Santos AMP, Ré P, Santos AD, Peliz A (2006) Vertical distribution of the European sardine (Sardina pilchardus) larvae and its implications for their survival. J Plankton Res 28(5):523–532. doi:10.1093/plankt/fbi137

    Article  Google Scholar 

  • Shields J, Earley C (1993) Cancrion australiensis new species (Isopoda: Entoniscidae) found in Thalamita sima (Brachyura: Portunidae) from Australia. Int J Parasitol 23(5):601–608. doi:10.1016/0020-7519(93)90166-V

    Article  Google Scholar 

  • Shukalyuk A, IsaevaV PI, Dolganov S (2005) Effects of the Briarosaccus callosus Infestation on the commercial Golden King Crab Lithodes aequispina. J Parasitol 91(6):1502–1504. doi:10.1645/GE-489R1.1

    Article  PubMed  Google Scholar 

  • Sirois P, Dobson JJ (2000) Influence of turbidity, food density and parasites on the ingestion and growth of larval rainbow smelt Osmerus mordax. Mar Ecol Prog Ser 193:167–179. doi:10.3354/meps193167

    Article  Google Scholar 

  • Skovgaard A, Bahlool QMS, Munk P, Bege T, Buchmann K (2011) Infection of North Sea cod, Gadus morhua L., larvae with the parasitic nematode Hysterothylacium aduncum Rudolphi. J Plankton Res 33:1311– 1316. doi:10.1093/plankt/fbr027

  • Tolonen A, Karlsbakk E (2003) Parasites of herring (Clupea harengus L.) larvae from a local Norwegian fjord stock. Sarsia 88(2):154–157. doi:10.1080/00364820310001327

    Article  Google Scholar 

  • Wenner E, Windsor N (1979) Parasitism of galatheid crustaceans from the Norfolk Canyon and Middle Atlantic Bight by bopyrid isopods. Crustaceana 37(2):293–303. doi:10.1163/156854079X01176

    Article  Google Scholar 

  • Zar JH (1996) Biostatistical analysis, 3rd edn. Prentice Hall International, New Jersey

    Google Scholar 

Download references

Acknowledgments

This study was funded by the Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) from the Chilean Government through two research projects: Fondecyt 1120868 granted to GM, and Fondecyt 1130304 granted to MG-N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Muñoz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz, G., Landaeta, M.F., Palacios-Fuentes, P. et al. Parasites of fish larvae: do they follow metabolic energetic laws?. Parasitol Res 114, 3977–3987 (2015). https://doi.org/10.1007/s00436-015-4625-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-015-4625-6

Keywords

Navigation