Skip to main content
Log in

Evolution versus constitution: differences in chromosomal inversion

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

We compared the chromosomal breakpoints of evolutionary conserved and constitutional inversions. Multicolor banding and human-specific bacterial artificial chromosomes were applied to map the breakpoints of constitutional pericentric inversions on human chromosomes 2 and 9. For the first time, we present a high-resolution analysis of the breakpoint regions, which are characterized by gene destitution, co-localization with fragile sites, multitude repeats as well as pseudogenes and, remarkably, a large sequence homology to the opposite breakpoint. In contrast, evolutionary inversion breakpoints lack such extensive cross-hybridizing regions and are often associated with fragile sites of the genome and low-copy repeats. These molecular characteristics gave evidence for different types of inversion formation and indicate that evolutionary inversions cannot originate from constitutional inversions like those of chromosomes 2 and 9. Finally, the constitutional inversion breakpoints were investigated on three different great ape species and on four test persons each bearing the same cytogenetically determined inversion on chromosomes 2 and 9, respectively. Our data indicate the existence of different molecular breakpoints for the two variant chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ait-Allah A, Ming P, Salem H, Reece E (1997) The clinical importance of pericentric inversion of chromosome 9 in prenatal diagnosis. J Matern Fetal Invest 7:126–128

    Google Scholar 

  • Dennehey BK, Gutches DG, McConkey EH, Krauter KS (2004) Inversion, duplication and changes in gene context are associated with human chromosome 18 evolution. Genomics 83:493–501

    CAS  PubMed  Google Scholar 

  • Di Giacomo MC, Cesarano C, Bukvic N, Manisali E, Guanti G, Susca F (2004) Duplication of 9 p11.2-p13.1: a benign cytogenetic variant. Prenat Diagn 24:619–622

    PubMed  Google Scholar 

  • Djalali M, Steinbach P, Bullerdiek J, Holmes-Siedle M, Verschraegen-Spae MR, Smith A (1986) The significance of pericentric inversions of chromosome 2. Hum Genet 72:32–36

    CAS  PubMed  Google Scholar 

  • Dutrillaux B (1979) Chromosomal evolution in primates: tentative phylogeny from Microcebus murinus (Prosimian) to man. Hum Genet 48:251–314

    CAS  PubMed  Google Scholar 

  • Fan Y, Linardopoulou E, Friedman C, Williams E, Trask BJ (2002) Genomic structure and evolution of the ancestral chromosome fusion site in 2q13-2q14.1 and paralogous regions on other human chromosomes. Genome Res 12:1651–1662

    CAS  PubMed  Google Scholar 

  • Gardner R, Sutherland G (2003) Chromosome abnormalities and genetic counseling, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Goidts V, Szamalek JM, Hameister H, Kehrer-Sawatzki H (2004) Segmental duplication associated with the human-specific inversion of chromosome 18: a further example of the impact of segmental duplications on karyotype and genome evolution in primates. Hum Genet 115:116–122

    CAS  PubMed  Google Scholar 

  • Hey J (2003) Speciation and inversions: chimps and humans. Bioessays 25:825–828

    PubMed  Google Scholar 

  • Humphray SJ, Oliver K, Hunt AR, Plumb RW, Loveland JE, Howe KL, Andrews TD, Searle S, Hunt SE, Scott CE, Jones MC, Ainscough R, Almeida JP, Ambrose KD, Ashwell RI, Babbage AK, Babbage S, Bagguley CL, Bailey J, Banerjee R, Barker DJ, Barlow KF, Bates K, Beasley H, Beasley O, Bird CP, Bray-Allen S, Brown AJ, Brown JY, Burford D, Burrill W, Burton J, Carder C, Carter NP, Chapman JC, Chen Y, Clarke G, Clark SY, Clee CM, Clegg S, Collier RE, Corby N, Crosier M, Cummings AT, Davies J, Dhami P, Dunn M, Dutta I, Dyer LW, Earthrowl ME, Faulkner L, Fleming CJ, Frankish A, Frankland JA, French L, Fricker DG, Garner P, Garnett J, Ghori J, Gilbert JG, Glison C, Grafham DV, Gribble S, Griffiths C, Griffiths-Jones S, Grocock R, Guy J, Hall RE, Hammond S, Harley JL, Harrison ES, Hart EA, Heath PD, Henderson CD, Hopkins BL, Howard PJ, Howden PJ, Huckle E, Johnson C, Johnson D, Joy AA, Kay M, Keenan S, Kershaw JK, Kimberley AM, King A, Knights A, Laird GK, Langford C, Lawlor S, Leongamornlert DA, Leversha M, Lloyd C, Lloyd DM, Lovell J, Martin S, Mashreghi-Mohammadi M, Matthews L, McLaren S, McLay KE, McMurray A, Milne S, Nickerson T, Nisbett J, Nordsiek G, Pearce AV, Peck AI, Porter KM, Pandian R, Pelan S, Phillimore B, Povey S, Ramsey Y, Rand V, Scharfe M, Sehra HK, Shownkeen R, Sims SK, Skuce CD, Smith M, Steward CA, Swarbreck D, Sycamore N, Tester J, Thorpe A, Tracey A, Tromans A, Thomas DW, Wall M, Wallis JM, West AP, Whitehead SL, Willey DL, Williams SA, Wilming L, Wray PW, Young L, Ashurst JL, Coulson A, Blocker H, Durbin R, Sulston JE, Hubbard T, Jackson MJ, Bentley DR, Beck S, Rogers J, Dunham I (2004) DNA sequence and analysis of human chromosome 9. Nature 429:369–374

    CAS  PubMed  Google Scholar 

  • Kehrer-Sawatzki H, Schreiner B, Taenzer S, Platzer M, Müller S, Hameister H (2002) Molecular characterization of the pericentric inversion that causes differences between chimpanzee chromosome 19 and human chromosome 17. Am J Hum Genet 71:375–388

    CAS  PubMed  Google Scholar 

  • Kehrer-Sawatzki H, Sandig CA, Goidts V, Hameister H (2005) Breakpoint analysis of the pericentric inversion between chimpanzee chromosome 10 and the homologous chromosome 12 in humans. Cytogenet Genome Res 108:91–97

    CAS  PubMed  Google Scholar 

  • Liehr T, Thoma K, Kammler K, Gehring C, Ekici A, Bathke KD, Grehl H, Rautenstrauss B (1995) Direct preparation of uncultured EDTA-treated or heparinized blood for interphase FISH analysis. Appl Cytogenet 21:185–188

    Google Scholar 

  • Liehr T, Heller A, Starke H, Rubtsov N, Trifonov V, Mrasek K, Weise A, Kuechler A, Claussen U (2002) Microdissection based high resolution multicolor banding for all 24 human chromosomes. Int J Mol Med 9:335–339

    CAS  PubMed  Google Scholar 

  • Locke DP, Archidiacono N, Misceo D, Cardone MF, Deschamps S, Roe B, Rocchi M, Eichler EE (2003) Refinement of a chimpanzee pericentric inversion breakpoint to a segmental duplication cluster. Genome Biol 4:50

    Article  Google Scholar 

  • Maresco DL, Chang E, Theil KS, Francke U, Anderson CL (1996) The three genes of the human FCGR1 gene family encoding Fc gamma RI flank the centromere of chromosome 1 at 1p12 and 1q21. Cytogenet Cell Genet 73:157–163

    CAS  PubMed  Google Scholar 

  • Marzella R, Viggiano L, Ricco AS, Tanzariello A, Fratello A, Archidiacono N, Rocchi M (1997) A panel of radiation hybrids and YAC clones specific for human chromosome 5. Cytogenet Cell Genet 77:232–237

    CAS  PubMed  Google Scholar 

  • Miro R, Clemente IC, Fuster C, Egozcue J (1987) Fragile sites, chromosome evolution and human neoplasia. Hum Genet 75:345–349

    CAS  PubMed  Google Scholar 

  • Mrasek K, Heller A, Rubtsov N, Trifonov V, Starke H, Rocchi M, Claussen U, Liehr T (2001) Reconstruction of the female Gorilla gorilla karyotype using 25-color FISH and multicolor banding (MCB). Cytogenet Cell Genet 93:242–248

    CAS  PubMed  Google Scholar 

  • Navarro A, Barton NH (2003) Chromosomal speciation and molecular divergence-accelerated evolution in rearranged chromosomes. Science 300:321–324

    CAS  PubMed  Google Scholar 

  • Nickerson E, Nelson DL (1998) Molecular definition of pericentric inversion breakpoints occurring during the evolution of humans and chimpanzees. Genomics 50:368–372

    CAS  PubMed  Google Scholar 

  • Park JP, Wojiski SA, Spellman RA, Rhodes CH, Mohandas TK (1998) Human chromosome 9 pericentric homologies: implications for chromosome 9 heteromorphisms. Cytogenet Cell Genet 82:192–194

    CAS  PubMed  Google Scholar 

  • Pevzner P, Tesler G (2003) Genome rearrangements in mammalian evolution: lessons from human and mouse genomes. Genome Res 13:37–45

    CAS  PubMed  Google Scholar 

  • Richard F, Lombard M, Dutrillaux B (2000) Phylogenetic origin of human chromosomes 7, 16 and 19 and their homologs in placental mammals. Genome Res 10:644–651

    CAS  PubMed  Google Scholar 

  • Rieseberg LH, Livingstone K (2003) Evolution. Chromosomal speciation in primates. Science 300:267–168

    CAS  PubMed  Google Scholar 

  • Ruiz-Herrera A, Garcia F, Giulotto E, Attolini C, Egozcue J, Ponsa M, Garcia M (2005) Evolutionary breakpoints are co-localized with fragile sites and intrachromosomal telomeric sequences in primates. Cytogenet Genome Res 108:234–247

    CAS  PubMed  Google Scholar 

  • Samonte RV, Eichler EE (2002) Segmental duplications and the evolution of the primate genome. Nat Rev Genet 3:65–72

    CAS  PubMed  Google Scholar 

  • Sankoff D, Deneault M, Turbis P, Allen C (2002) Chromosomal distributions of breakpoints in cancer, infertility and evolution. Theor Popul Biol 61:497–501

    PubMed  Google Scholar 

  • Shaffer LG, Lupski JR (2000) Molecular mechanisms for constitutional chromosomal rearrangements in humans. Annu Rev Genet 34:297–329

    CAS  PubMed  Google Scholar 

  • Shimada MK, Kim CG, Kitano T, Ferrell RE, Kohara Y, Saitou N (2005) Nucleotide sequence comparison of a chromosome rearrangement on human chromosome 12 and the corresponding ape chromosomes. Cytogenet Genome Res 108:83–90

    CAS  PubMed  Google Scholar 

  • Smeets DF, van de Klundert FA (1990) Common fragile sites in man and three closely related primate species. Cytogenet Cell Genet 53:8–14

    CAS  PubMed  Google Scholar 

  • Stankiewicz P, Lupski JR (2002) Molecular-evolutionary mechanisms for genomic disorders. Curr Opin Genet Dev 12:312–319

    CAS  PubMed  Google Scholar 

  • Starke H, Seidel J, Henn W, Reichardt S, Volleth M, Stumm M, Behrend C, Sandig KR, Kelbova C, Senger G, Albrecht B, Hansmann I, Heller A, Claussen U, Liehr T (2002) Homologous sequences at human chromosome 9 bands p12 and q13-21.1 are involved in different patterns of pericentric rearrangements. Eur J Hum Genet 10:790–800

    CAS  PubMed  Google Scholar 

  • Sutherland GR (2003) Rare fragile sites. Cytogenet Genome Res 100:77–84

    CAS  PubMed  Google Scholar 

  • Sutherland GR, Baker E (2003) Forgotten fragile sites and related phenomena. Cytogenet Genome Res 100:89–91

    CAS  PubMed  Google Scholar 

  • Teebi AS, Gibson L, McGrath J, Meyn MS, Breg WR, Yang-Feng TL (1993) Molecular and cytogenetic characterization of 9p-abnormalities. Am J Med Genet 46:288–292

    CAS  PubMed  Google Scholar 

  • Verma RS, Babu A (1989) Human chromosomes—manual of basic techniques. Pergamon, New York

    Google Scholar 

  • Weise A, Starke H, Mrasek K, Claussen U, Liehr T (2005) New insights into the evolution of chromosome 1. Cytogenet Genome Res 108:217–222

    CAS  PubMed  Google Scholar 

  • Yue Y, Grossmann B, Tsend-Ayush E, Grutzner F, Ferguson-Smith MA, Yang F, Haaf T (2005) Genomic structure and paralogous regions of the inversion breakpoint occurring between human chromosome 3p12.3 and orangutan chromosome 2. Cytogenet Genome Res 108:98–105

    CAS  PubMed  Google Scholar 

  • Yunis JJ, Prakash O (1982) The origin of man: a chromosomal pictorial legacy. Science 215:1525–1530

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by INTAS (2143) and Dr. Robert Pfleger Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Weise.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, S., Claussen, U., Liehr, T. et al. Evolution versus constitution: differences in chromosomal inversion. Hum Genet 117, 213–219 (2005). https://doi.org/10.1007/s00439-005-1294-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-005-1294-z

Keywords

Navigation