Skip to main content

Advertisement

Log in

MyoD and myogenin protein expression in skeletal muscles of senile rats

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

We analyzed the level of protein expression of two myogenic regulatory factors (MRFs), MyoD and myogenin, in senile skeletal muscles and determined the cellular source of their production in young adult (4 months old), old (24, 26, and 28 months old), and senile (32 months old) male rats. Immunoblotting demonstrated levels of myogenin ~3.2, ~4.0, and ~5.5 times higher in gastrocnemius muscles of 24-, 26-, and 32-month-old animals, respectively, than in those of young adult rats. Anti-MyoD antibody recognized two major areas of immunoreactivity in Western blots: a single MyoD-specific band (~43–45 kDa) and a double (or triple) MyoD-like band (~55–65 kDa). Whereas the level of MyoD-specific protein in the 43- to 45-kDa band remained relatively unchanged during aging compared with that of young adult rats, the total level of MyoD-like immunoreactivity within the 55- to 65-kDa bands was ~3.4, ~4.7, ~9.1, and ~11.7 times higher in muscles of 24-, 26-, 28-, and 32-month-old rats, respectively. The pattern of MRF protein expression in intact senile muscles was similar to that recorded in young adult denervated muscles. Ultrastructural analysis of extensor digitorum longus muscle from senile rats showed that, occasionally, the area of the nerve-muscle junction was partially or completely devoid of axons, and satellite cells with the features of activated cells were found on the surface of living fibers. Immunohistochemistry detected accumulated MyoD and myogenin proteins in the nuclei of both fibers and satellite cells in 32-month-old muscles. We suggest that the up-regulated production of MyoD and myogenin proteins in the nuclei of both fibers and satellite cells could account for the high level of MRF expression in muscles of senile rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2A, B.
Fig. 3.
Fig. 4.
Fig. 5A–D.
Fig. 6A–D.
Fig. 7A–F.
Fig. 8A–D.
Fig. 9A–I.
Fig. 10A–F.
Fig. 11A–F.
Fig. 12A–F.
Fig. 13A–F.
Fig. 14A–F.

Similar content being viewed by others

References

  • Abu-Hatoum O, Gross-Mesilaty S, Breitschopf K, Hoffman A, Gonen H, Ciechanover A, Bengal E (1998) Degradation of myogenic transcription factor MyoD by the ubiquitine pathway in vivo and in vitro: regulation by specific DNA binding. Mol Cell Biol 18:5670–5677

    CAS  PubMed  Google Scholar 

  • Adams L, Carlson BM, Henderson L, Goldman D (1995) Adaptation of nicotinic acetylcholine receptor, myogenin, and MRF4 gene expression to long-term muscle denervation. J Cell Biol 131:1341–1349

    CAS  PubMed  Google Scholar 

  • Alway SE, Lowe DA, Chen KD (2001) The effects of age and hindlimb suspension on the levels of expression of the myogenic regulatory factors MyoD and myogenin in rat fast and slow skeletal muscles. Exp Physiol 86:509–517

    CAS  PubMed  Google Scholar 

  • Alway SE, Degens H, Lowe DA, Krishnamurthy G (2002) Increased myogenic repressor Id mRNA and protein levels in hindlimb muscles of aged rats. Am J Physiol Regul Integrative Comp Physiol 282:R411–R422

    CAS  Google Scholar 

  • Breitschopf K, Bengal E, Ziv T, Admon A, Ciechanover A (1998) A novel site for ubiquitination: the N-terminal residue, and not internal lysines of MyoD, is essential for conjugation and degradation of the protein. EMBO J 17:5964–5973

    Article  CAS  PubMed  Google Scholar 

  • Buonanno A, Cheng J, Venepally P, Weis J, Calvo S (1998) Activity-dependent regulation of muscle genes: repressive and stimulatory effects of innervation. Acta Physiol Scand 163:S17–S26

    Article  CAS  PubMed  Google Scholar 

  • Caccia MR, Harris JB, Johnson MA (1979) Morphology and physiology of skeletal muscle in aging rodents. Muscle Nerve 2:202–212

    CAS  PubMed  Google Scholar 

  • Carlson BM (1995) Factors influencing the repair and adaptation of muscles in aged individuals: satellite cells and innervation. J Gerontol Biol Sci 50A:96–100

    Google Scholar 

  • Carlson BM, Dedkov EI, Borisov AB, Faulkner JA (2001) Skeletal muscle regeneration in very old rats. J Gerontol Biol Sci 56A:B224–B233

    Google Scholar 

  • Cooper RN, Tajbakhsh S, Mouly V, Cossu G, Buckingham M, Butler-Browne GS (1999) In vivo satellite cell activation via Myf5 and MyoD in regenerating mouse skeletal muscle. J Cell Sci 112:2895–2901

    CAS  PubMed  Google Scholar 

  • Creuzet S, Lescaudron L, Li Z, Fontaine-Perus J (1998) MyoD, myogenin, and desmin-nls-lacZ transgene emphasize the distinct patterns of satellite cell activation in growth and regeneration. Exp Cell Res 243:241–253

    Article  CAS  PubMed  Google Scholar 

  • Daniloff JK, Levi G, Grumet M, Rieger F, Edelman GM (1986) Altered expression of neuronal cell adhesion molecules induced by nerve injury and repair. J Cell Biol 103:929–945

    CAS  PubMed  Google Scholar 

  • Dedkov EI, Kostrominova TY, Borisov AB, Carlson BM (2001) Reparative myogenesis in long-term denervated skeletal muscles of adult rats results in a reduction of the satellite cell population. Anat Rec 263:139–154

    Article  CAS  PubMed  Google Scholar 

  • Dias P, Parham DM, Shapiro DN, Tapscott SJ, Houghton PJ (1992) Monoclonal antibodies to the myogenic regulatory protein MyoD1: epitope mapping and diagnostic utility. Cancer Res 52:6431–6439

    CAS  PubMed  Google Scholar 

  • Duclert A, Piette J, Changeux J-P (1991) Influence of innervation of myogenic factors and acetylcholine receptor α-subunit mRNAs. NeuroReport 2:25–28

    CAS  PubMed  Google Scholar 

  • Dupont-Versteegden EE, Houle JD, Gurley CM, Peterson CA (1998) Early changes in muscle fiber size and gene expression in response to spinal cord transection and exercise. Am J Physiol Cell Physiol 275:C1124–C1133

    CAS  Google Scholar 

  • Edmondson DG, Olson EN (1993) Helix-loop-helix proteins as regulators of muscle-specific transcription. J Biol Chem 268:755–758

    CAS  PubMed  Google Scholar 

  • Eftimie R, Brenner HR, Buonanno A (1991) Myogenin and MyoD join a family of skeletal muscle genes regulated by electrical activity. Proc Natl Acad Sci USA 88:1349–1353

    CAS  PubMed  Google Scholar 

  • Faulkner JA, Brooks SV, Zebra E (1995) Muscle atrophy and weakness with aging: contraction-induced injury as an underlying mechanism. J Gerontol Biol Sci 50A:124–129

    Google Scholar 

  • Füchtbauer E-M, Westphal H (1992) MyoD and myogenin are coexpressed in regenerating skeletal muscle of the mouse. Dev Dyn 193:34–39

    PubMed  Google Scholar 

  • Fujisawa K (1974) Some observations on the skeletal musculature of aged rats. J Neurol Sci 22:353–366

    CAS  PubMed  Google Scholar 

  • Funk WD, Ouellette M, Wright WE (1991) Molecular biology of myogenic regulatory factors. Mol Biol Med 8:185–195

    CAS  PubMed  Google Scholar 

  • Gomes RR Jr, Booth FW (1998) Expression of acetylcholine receptor mRNAs in atrophying and non-atrophying skeletal muscles of old rats. J Appl Physiol 85:1903–1908

    CAS  PubMed  Google Scholar 

  • Grounds MD, Garrett KL, Lai MC, Wright WE, Beilharz MW (1992) Identification of skeletal muscle precursor cells in vivo by use of MyoD1 and myogenin probes. Cell Tissue Res 267:99–104

    CAS  PubMed  Google Scholar 

  • Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91:534–551

    CAS  PubMed  Google Scholar 

  • Hughes SM, Koishi K, Rudnicki M, Maggs AM (1997) MyoD protein is differentially accumulated in fast and slow skeletal muscle fibers and required for normal fiber type balance in rodents. Mech Dev 61:151–163

    CAS  PubMed  Google Scholar 

  • Irintchev A, Zeschnigk M, Starzinski-Powitz A, Wernig A (1994) Expression pattern of M-cadherin in normal, denervated, and regenerating mouse muscles. Dev Dyn 199:326–337

    CAS  PubMed  Google Scholar 

  • Kami K, Noguchi K, Senba E (1995) Localization of myogenin, c-fos, c-jun, and muscle-specific gene mRNAs in regenerating rat skeletal muscle. Cell Tissue Res 280:11–19

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann U, Martin B, Link D, Witt K, Zeitler R, Reinhard S, Starzinski-Powitz A (1999) M-cadherin and its sisters in development of striated muscle. Cell Tissue Res 296:191–198

    Article  CAS  PubMed  Google Scholar 

  • Koishi K, Zhang M, McLennan IS, Harris AJ (1995) MyoD protein accumulates in satellite cells and is neurally regulated in regenerating myotubes and skeletal muscle fibers. Dev Dyn 202:244–254

    CAS  PubMed  Google Scholar 

  • Kostrominova TY, Macpherson PCD, Carlson BM, Goldman D (2000) Regulation of myogenin protein expression in denervated muscles from young and old rats. Am J Physiol Regul Integrative Comp Physiol 279:R179–R188

    CAS  Google Scholar 

  • Larsson L (1982) Aging in mammalian skeletal muscle. In: Mortimer JA, Pirozzolo FJ, Maletta GJ (eds) The aging motor system. Praeger, New York, pp 60–97

  • Larsson L, Ramamurthy B (2000) Aging-related changes in skeletal muscle. Drugs Aging 17:303–316

    CAS  PubMed  Google Scholar 

  • Launay T, Armand A-S, Charbonnier F, Mira J-C, Donsez E, Gallien CL, Chanoine C (2001) Expression and neural control of myogenic regulatory factor genes during regeneration of mouse soleus. J Histochem Cytochem 49:887–899

    CAS  PubMed  Google Scholar 

  • Lowe DA, Lund T, Always SE (1998) Hypertrophy-stimulated myogenic regulatory factor mRNA increases are attenuated in fast muscle of aged quails. Am J Physiol 275 (Cell Physiol 44):C155–C162

    CAS  PubMed  Google Scholar 

  • Marsh DR, Criswell DS, Carson JA, Booth FW (1997) Myogenic regulatory factors during regeneration of skeletal muscle in young, adult, and old rats. J Appl Physiol 83:1270–1275

    CAS  PubMed  Google Scholar 

  • Moore SE, Walsh FS (1986) Nerve dependent regulation of neural cell adhesion molecule expression in skeletal muscle. Neurosci 18:499–505

    CAS  Google Scholar 

  • Musaro A, Cusella De Angelis MG, Germani A, Ciccarelli C, Molinaro M, Zani BM (1995) Enhanced expression of myogenic regulatory genes in aging skeletal muscle. Exp Cell Res 221:241–248

    CAS  PubMed  Google Scholar 

  • Navarro A, Lopez-Cepero JM, Sanchez del Pino MJ (2001) Skeletal muscle and aging. Front Biosci 6:D26–D44

    CAS  PubMed  Google Scholar 

  • Neville C, Rosenthal N (1996) Transcriptional regulation of skeletal myogenesis. In: Goodbourn S (ed) Eukariotic gene transcription. Oxford University Press, Oxford, pp 192–233

  • Puri PL, Sartorelli V (2000) Regulation of muscle regulatory factors by DNA-binding, interacting proteins, and post-transcriptional modifications. J Cell Physiol 185:155–173

    Article  CAS  PubMed  Google Scholar 

  • Robertson TA, Grounds MD, Mitchell CA, Papadimitriou JM (1990) Fusion between myogenic cells in vivo: an ultrastructural study in regenerating murine skeletal muscle. J Struct Biol 105:170–182

    CAS  PubMed  Google Scholar 

  • Sabourin LA, Rudnicki MA (2000) The molecular regulation of myogenesis. Clin Genet 57:16–25

    Article  CAS  PubMed  Google Scholar 

  • Sakuma K, Watanabe K, Sano M, Uramoto I (1999) The adaptive response of MyoD family proteins in overloaded, regenerating and denervated rat muscles. Biochim Biophys Acta 1428:284–292

    Article  CAS  PubMed  Google Scholar 

  • Sanes JR, Schachner M, Covault J (1986) Expression of several adhesive macromolecules (N-CAM, L1, J1, NILE, uvomorulin, laminin, fibronectin, and a heparan sulfate proteoglycan) in embryonic, adult, and denervated adult skeletal muscle. J Cell Biol 102:420–431

    CAS  PubMed  Google Scholar 

  • Schmalbruch H, Lewis DM (2000) Dynamics of nuclei of muscle fibers and connective tissue cells in normal and denervated rat muscles. Muscle Nerve 23:617–626

    Article  CAS  PubMed  Google Scholar 

  • Tamaki T, Uchiyama S, Uchiyama Y, Akatsuka A, Yoshimura S, Roy RR, Edgerton VR (2000) Limited myogenic response to a single bout of weight-lifting exercise in old rats. Am J Physiol Cell Physiol 278:C1143–C1152

    CAS  PubMed  Google Scholar 

  • Tapscott SJ, Davis RL, Thayer MJ, Cheng P-F, Weintraub H, Lassar AB (1988) MyoD1: a nuclear phosphoprotein requiring a myc homology region to convert fibroblasts to myoblasts. Science 242:405–411

    CAS  PubMed  Google Scholar 

  • Voytik SL, Przyborski M, Badylak SF, Konieczny SF (1993) Differential expression of muscle regulatory factor genes in normal and denervated adult rat hindlimb muscles. Dev Dyn 198:214–224

    CAS  PubMed  Google Scholar 

  • Weis J (1994) Jun, Fos, MyoD1 and myogenin proteins are increased in skeletal muscle fiber nuclei after denervation. Acta Neuropathol 87:63–70

    Article  CAS  PubMed  Google Scholar 

  • Witzemann V, Sakmann B (1991) Differential regulation of MyoD and myogenin mRNA levels by nerve induced muscle activity. FEBS Lett 282:259–264

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard I. Dedkov.

Additional information

This work was financed by NIH (grant no. PO1-AG10821). T.Y. Kostrominova was supported by NIA research training grant no. T32-AG00116

E.I. Dedkov and T.Y. Kostrominova contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dedkov, E.I., Kostrominova, T.Y., Borisov, A.B. et al. MyoD and myogenin protein expression in skeletal muscles of senile rats. Cell Tissue Res 311, 401–416 (2003). https://doi.org/10.1007/s00441-002-0686-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-002-0686-9

Keywords

Navigation