Skip to main content

Advertisement

Log in

Development of diagnostic and treatment strategies for glaucoma through understanding and modification of scleral and lamina cribrosa connective tissue

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Considerable evidence indicates that the state of ocular connective tissues and their response in glaucomatous disease affect the degree of glaucoma damage. Both experimental and clinical data suggest that improved diagnostic and prognostic information can be derived from the assessment of the mechanical responsiveness of the sclera and lamina cribrosa to intraocular pressure (IOP). Controlled mutagenesis of the sclera has produced a mouse strain that is relatively resistant to increased IOP. Alteration of the baseline scleral state can be accomplished through either increased cross-linking of fibrillar components or their reduction. The sclera is a dynamic structure, altering its structure and behavior in response to IOP change. The biochemical pathways that control these responses are fertile areas for new glaucoma treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Amrite AC, Edelhauser HF, Singh SR, Kompella UB (2008) Effect of circulation on the disposition and ocular tissue distribution of 20 nm nanoparticles after periocular administration. Mol Vis 14:150–160

    PubMed  CAS  Google Scholar 

  • Bengtsson B, Heijl A (2005) Diurnal IOP fluctuation: not an independent risk factor for glaucomatous visual field loss in high-risk ocular hypertension. Graefe’s Arch Clin Exp Ophthalmol 243:513–518

    Article  Google Scholar 

  • Boland MV, Quigley HA (2007) Risk factors and open-angle glaucoma: concepts and applications. J Glaucoma 16:406–418

    Article  PubMed  Google Scholar 

  • Boyce BL, Jones RE, Nguyen TD, Grazier JM (2007) Stress-controlled viscoelastic tensile response of bovine cornea. J Biomech 40:2367–2376

    Article  PubMed  CAS  Google Scholar 

  • Brummer G, Littlechild S, McCall S, Zhang Y, Conrad GW (2011) The role of non-enzymatic glycation and carbonyls in collagen cross-linking for the treatment of keratoconus. Invest Ophthalmol Vis Sci 52:6363–6369

    Article  PubMed  CAS  Google Scholar 

  • Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT (2005) The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res 24:39–73

    Article  PubMed  Google Scholar 

  • Clark SJ, Keenan TDL, Fielder HL, Collinson LJ, Holey RJ, Merry CL, Kuppevelt TH van, Day AJ, Bishop PN (2011) Mapping the differential distribution of glycosaminoglycans in the adult human retina, choroid, and sclera. Invest Ophthalmol Vis Sci 52:6511–6521

    Google Scholar 

  • Cone FE, Gelman SE, Son JL, Pease ME, Quigley HA (2010) Differential susceptibility to experimental glaucoma among 3 mouse strains using bead and viscoelastic injection. Exp Eye Res 91:415–424

    Article  PubMed  CAS  Google Scholar 

  • Cone FE, Steinhart MR, Oglesby EN, Kalesnykas G, Pease ME, Quigley HA (2012) The effects of anesthesia, mouse strain and age on intraocular pressure and an improved murine model of experimental glaucoma. Exp Eye Res 99:27–35

    Article  PubMed  CAS  Google Scholar 

  • Congdon NG, Broman AT, Bandeen-Roche K, Grover D, Quigley HA (2006) Central corneal thickness and corneal hysteresis associated with glaucoma damage. Am J Ophthalmol 141:868–875

    Article  PubMed  Google Scholar 

  • Coudrillier B, Tian J, Alexander S, Myers KM, Quigley HA, Nguyen TD (2012) Biomechanics of the human posterior sclera: age- and glaucoma-related changes measured using inflation testing. Invest Ophthalmol Vis Sci 53:1714–1728

    Article  PubMed  Google Scholar 

  • Danysh BP, Patel TP, Czymmek KJ, Edwards DA, Wang L, Pande J, Duncan MK (2010) Characterizing molecular diffusion in the lens capsule. Matrix Biol 29:228–236

    Article  PubMed  CAS  Google Scholar 

  • Downs JC, Suh J-KF, Thomas KA, Bellezza AJ, Hart RT, Burgoyne CF (2005) Viscoelastic material properties of the peripapillary sclera in normal and early-glaucoma monkey eyes. Invest Ophthalmol Vis Sci 46:540–546

    Article  PubMed  Google Scholar 

  • Downs JC, Yang H, Girkin C, Sakata L, Bellezza A, Thompson H, Burgoyne CF (2007) Three-dimensional histomorphometry of the normal and early glaucomatous monkey optic nerve head: neural canal and subarachnoid space architecture. Invest Ophthalmol Vis Sci 48:3195–3208

    Article  PubMed  Google Scholar 

  • Ebneter A, Wagels B, Zinkernagel MS (2009) Non-invasive biometric assessment of ocular rigidity in glaucoma patients and controls. Eye 23:606–611

    Article  PubMed  CAS  Google Scholar 

  • Gaasterland D, Kupfer C (1974) Experimental glaucoma in the rhesus monkey. Invest Ophthalmol 13:455–457

    PubMed  CAS  Google Scholar 

  • Girard MJ, Suh JK, Bottlang M, Burgoyne CF, Downs JC (2009) Scleral biomechanics in the aging monkey eye. Invest Ophthalmol Vis Sci 50:5226–5237

    Article  PubMed  Google Scholar 

  • Girard MJA, Suh J-KF, Mottlang M, Burgoyne CF, Downs JC (2011a) Biomechanical changes in the sclera of monkey eyes exposed to chronic IOP elevations. Invest Ophthamol Vis Sci 52:5656–5669

    Article  Google Scholar 

  • Girard MJ, Suh JK, Bottlang M, Burgoyne CF, Downs JC (2011b) Biomechanical changes in the sclera of monkey eyes exposed to chronic IOP elevations. Invest Ophthalmol Vis Sci 52:5656–5669

    Article  PubMed  Google Scholar 

  • Gottanka J, Flugel-Koch C, Martus P, Johnson DH, Lütjen-Drecoll E (1997) Correlation of pseudoexfoliative material and optic nerve damage in pseudoexfoliation syndrome. Invest Ophthalmol Vis Sci 38:2435–2446

    PubMed  CAS  Google Scholar 

  • Grieshaber MC, Mozaffarieh M, Flammer J (2007) What is the link between vascular dysregulation and glaucoma? Surv Ophthalmol 52 (Suppl 2):S144–S154

    Article  PubMed  Google Scholar 

  • Habashi JP, Judge DP, Holm TM, Cohn RD, Loeys BL, Cooper TK, Myers L, Klein EC, Liu G, Calvi C, Podowski M, Neptune ER, Halushka MK, Bedja D, Gabrielson K, Rifkin DB, Carta L, Ramirez F, Huso DL, Dietz HC (2006) Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312:117–121

    Article  PubMed  CAS  Google Scholar 

  • Habashi JP, Doyle JJ, Holm TM, Aziz H, Schoenhoff F, Bedha D, Chen Y, Modiri AN, Judge DP, Dietz HC (2011) Angiotensin II type 2 receptor signaling attenuates aortic aneurysm in mice through ERK antagonism. Science 332:361–365

    Article  PubMed  CAS  Google Scholar 

  • Hansen P, Hassenkam T, Svensson RB, Aagaard P, Trappe T, Haraldsson BT, Kjaer M, Magnusson P (2009) Glutaraldehyde cross-linking of tendon—mechanical effects at the level of the tendon fascicle and fibril. Connect Tissue Res 50:211–222

    Article  PubMed  CAS  Google Scholar 

  • Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M, The Early Manifest Glaucoma Trial Group (2002) Reduction of intraocular pressure and glaucoma progression. Arch Ophthalmol 120:1268–1279

    Article  PubMed  Google Scholar 

  • Hernandez MR (1992) Ultrastructural immunocytochemical analysis of elastin in the human lamina cribrosa. Changes in elastic fibers in primary open-angle glaucoma. Invest Ophthalmol Vis Sci 33:2891–2903

    PubMed  CAS  Google Scholar 

  • Hernandez MR, Andrzejewska WM, Neufeld AH (1990) Changes in the extracellular matrix of the human optic nerve head in primary open-angle glaucoma. Am J Ophthalmol 109:180–188

    PubMed  CAS  Google Scholar 

  • Hommer A, Fuchsjager-Mayr G, Resch H, Vass C, Garhofer G, Schmetterer L (2008) Estimation of ocular rigidity based on measurement of pulse amplitude using pneumotonometry and fundus pulse using laser interferometry in glaucoma. Invest Ophthalmol Vis Sci 49:4046–4050

    Article  PubMed  Google Scholar 

  • Howell GR, Soto I, Zhu X, Ryan M, Macalinao DG, Sousa GL, Caddle LB, MacNicoll KH, Barbay JM, Porciatti V, Anderson MG, Smith RS, Clark AF, Libby RT, John SW (2012) Radiation treatment inhibits monocyte entry into the optic nerve head and prevents neuronal damage in a mouse model of glaucoma. J Clin Invest 122:1246–1261

    Article  PubMed  CAS  Google Scholar 

  • Huang W, Fileta JB, Dobberfuhl A, Filippopolous T, Guo Y, Kwon G, Grosskreutz CL (2005) Calcineurin cleavage is triggered by elevated intraocular pressure, and calcineurin inhibition blocks retinal ganglion cell death in experimental glaucoma. Proc Natl Acad Sci USA 102:12242–12247

    Article  PubMed  CAS  Google Scholar 

  • Ji JZ, Elyaman W, Yip HK, Lee VW, Yick LW, Hugon J, So KF (2004) CNTF promotes survival of retinal ganglion cells after induction of ocular hypertension in rats: the possible involvement of STAT3 pathway. Eur J Neurosci 19:265–272

    Article  PubMed  Google Scholar 

  • Jobling AL, Nguyen M, Gentle A, McBrien NA (2004) Isoform specific changes in scleral transforming growth factor beta expression and the regulation of collagen synthesis during myopia progression. J Biol Chem 30:18121–18126

    Article  Google Scholar 

  • John SW, Smith RS, Savinova OV, Hawes NL, Chang B, Turnbull D, Davisson M, Roderick TH, Heckenlively JR (1998) Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2J mice. Invest Ophthalmol Vis Sci 39:951–962

    PubMed  CAS  Google Scholar 

  • Johnson EC, Cepurna WO, Doser TA, Morrison JC (2007) Global changes in optic nerve head gene expression after exposure to elevated intraocular pressure in a rat glaucoma model. Invest Ophthalmol Vis Sci 48:3161–3177

    Article  PubMed  Google Scholar 

  • Junglas B, Kuespert S, Seleem AA, Struller T, Ullmann S, Bösl M, Bosserhoff A, Köstler J, Wagner R, Tamm ER, Fuchshofer R (2012) Connective tissue growth factor causes glaucoma by modifying the actin cytoskeleton of the trabecular meshwork. Am J Pathol 180:2386–2403

    Article  PubMed  CAS  Google Scholar 

  • Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK II, Wilson MR, Gordon MO (2002) The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 120:701–713

    Article  PubMed  Google Scholar 

  • Kerrigan LA, Zack DJ, Quigley HA, Smith SD, Pease ME (1997) TUNEL-positive ganglion cells in human primary open angle glaucoma. Arch Ophthalmol 115:1031–1035

    Article  PubMed  CAS  Google Scholar 

  • Kirwan RP, Wordinger RJ, Clark AF, O’Brien CJ (2009) Differential global and extra-cellular matrix focused gene expression patterns between normal and glaucomatous human lamina cribrosa cells. Mol Vis 15:76–88

    PubMed  CAS  Google Scholar 

  • Lanir Y (1983) Constitutive equations for fibrous connective tissues. J Biomech 16:1–12

    Article  PubMed  CAS  Google Scholar 

  • Mabuchi F, Lindsey JD, Aihara M, Mackey MR, Weinreb RN (2004) Optic nerve damage in mice with a targeted type I collagen mutation. Invest Ophthalmol Vis Sci 45:1841–1845

    Article  PubMed  Google Scholar 

  • Malik NS, Moss SJ, Ahmed N, Furth AJ, Wall RS, Meek KM (1992) Ageing of the human corneal stroma: structural and biochemical changes. Biochim Biophys Acta 1138:222–228

    Article  PubMed  CAS  Google Scholar 

  • Mao M, Hedberg-Buenz A, Koehn D, John SWM, Anderson MG (2011) Anterior segment dysgenesis and early-onset glaucoma in nee mice with mutation of Sh3pxd2b. Invest Ophthalmol Vis Sci 52:2679–2688

    Article  PubMed  CAS  Google Scholar 

  • Martin KRG, Quigley HA, Zack DJ, Levkovitch-Verbin H, Kielczewski J, Valenta D, Baumrind L, Pease ME, Klein RL, Hauswirth WW (2003) Gene therapy with brain-derived neurotrophic factor protects retinal ganglion cells in a rat glaucoma model. Invest Ophthalmol Vis Sci 44:4357–4365

    Article  PubMed  Google Scholar 

  • McBrien NA, Jobling AI, Gentle A (2009) Biomechanics of the sclera in myopia: extracellular and cellular factors. Optom Vis Sci 86:E23–E30

    Article  PubMed  Google Scholar 

  • McDowell CM, Luan T, Zhang Z, Putliwala T, Wordinger RJ, Millar JC, John SWM, Pang I-H, Clark AF (2012) Mutant human myocilin induces strain specific differences in ocular hypertension and optic nerve damage in mice. Exp Eye Res 100:65–72

    Article  PubMed  CAS  Google Scholar 

  • McKinnon SJ, Lehman DM, Tahzib NG, Ransom NL, Reitsamer HA, Liston P, LaCasse E, Li Q, Korneluk RG, Hauswirth WW (2002) Baculoviral IAP repeat-containing-4 protects optic nerve axons in a rat glaucoma model. Mol Ther 5:780–787

    Article  PubMed  CAS  Google Scholar 

  • Morrison JC, Dorman-Pease ME, Dunkelberger GR, Quigley HA (1990) Optic nerve head extracellular matrix in primary optic atrophy and experimental glaucoma. Arch Ophthalmol 108:1020–1024

    Article  PubMed  CAS  Google Scholar 

  • Morrison JC, Moore CG, Deppmeier LMH, Gold BF, Meshul CK, Johnson EC (1997) A rat model of chronic pressure-induced optic nerve damage. Exp Eye Res 64:85–96

    Article  PubMed  CAS  Google Scholar 

  • Morrison JC, Nylander KB, Lauer AK, Cepurna WO, Johnson E (1998) Glaucoma drops control intraocular pressure and protect optic nerves in a rat model of glaucoma. Invest Ophthalmol Vis Sci 39:526–531

    PubMed  CAS  Google Scholar 

  • Myers KM, Cone FE, Quigley HA, Gelman SE, Pease ME, Nguyen TD (2010) The in vitro inflation response of mouse sclera. Exp Eye Res 91:866–875

    Article  PubMed  CAS  Google Scholar 

  • Nakazawa T, Nakazawa C, Matsubara A, Noda K, Hisatomi T, She H, Michaud N, Hafezi-Moghadam A, Miller JW, Benowitz LI (2006) Tumor necrosis factor-alpha mediates oligodendrocyte death and delayed retinal ganglion cell loss in a mouse model of glaucoma. J Neurosci 26:12633–12641

    Article  PubMed  CAS  Google Scholar 

  • Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE, Gayraud B, Ramirez F, Sakai LY, Dietz HC (2003) Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet 33:407–411

    Article  PubMed  CAS  Google Scholar 

  • Neufeld AH, Das S, Vora S, Gachie E, Kawai S, Manning PT, Connor JR (2002) A prodrug of a selective inhibitor of inducible nitric oxide synthase is neuroprotective in the rat model of glaucoma. J Glaucoma 11:221–225

    Article  PubMed  Google Scholar 

  • Ng CM, Cheng A, Myers LA, Martinez-Murillo F, Jie C, Bedja D, Gabrielson KL, Hausladen JM, Mecham RP, Judge DP, Dietz HC (2004) TGF-beta-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome. J Clin Invest 114:1586–1592

    PubMed  CAS  Google Scholar 

  • Nguyen C, Cone FE, Nguyen TD, Coudrillier B, Pease ME, Steinhart MR, Oglesby EN, Quigley HA (2013) Studies of scleral biomechanical behavior related to susceptibility for retinal ganglion cell loss in experimental mouse glaucoma. Invest Ophthalmol Vis Sci (in press)

  • Nouri-Mahdavi K, Hoffman D, Coleman A, Liu G, Li G, Gaasterland D, Caprioli J (2004) Predictive factors for glaucomatous visual field progression in the Advanced Glaucoma Intervention Study. Ophthalmology 111:1627–1635

    Article  PubMed  Google Scholar 

  • Olsen TW, Edelhauser HF, Lim JI, Geroski DH (1995) Human scleral permeability. Effects of age, cryotherapy, transscleral diode laser, and surgical thinning. Invest Ophthalmol Vis Sci 36:1893–1903

    PubMed  CAS  Google Scholar 

  • Olsen TW, Aaberg SY, Geroski DH, Edelhauser HF (1998) Human sclera: thickness and surface area. Am J Ophthalmol 125:237–241

    Article  PubMed  CAS  Google Scholar 

  • Pena JDO, Taylor AW, Ricard CS, Vidal I, Hernandez MR (1999) Transforming growth factor isoforms in human optic nerve heads. Br J Ophthalmol 83:209–218

    Article  PubMed  CAS  Google Scholar 

  • Phillips JR, Khalaj M, McBrien NA (2000) Induced myopia associated with increased scleral creep in the chick and tree shrew eyes. Invest Ophthalmol Vis Sci 41:2028–2034

    PubMed  CAS  Google Scholar 

  • Pijanka JK, Coudrillier B, Ziegler K, Sorensen T, Meek KM, Nguyen TD, Quigley HA, Boote C (2012) Quantitative mapping of collagen fiber orientation in non-glaucoma and glaucoma posterior human scleras. Invest Ophthalmol Vis Sci 53:5258–5270

    Article  PubMed  CAS  Google Scholar 

  • Quigley HA, Addicks EM (1981) Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. Arch Ophthalmol 99:137–143

    Article  PubMed  CAS  Google Scholar 

  • Quigley HA, Broman A (2006) The number of persons with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90:151–156

    Article  Google Scholar 

  • Quigley HA, Green WR (1979) The histology of human glaucoma cupping and optic nerve damage: clinicopathologic correlation in 21 eyes. Ophthalmology 10:1803–1827

    Google Scholar 

  • Quigley HA, Addicks EM, Green WR, Maumenee AE (1981) Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol 99:635–649

    Article  PubMed  CAS  Google Scholar 

  • Quigley HA, Hohman RM, Addicks EM, Massof RS, Green WR (1983) Morphologic changes in the lamina cribrosa correlated with neural loss in open-angle glaucoma. Am J Ophthalmol 95:673–691

    PubMed  CAS  Google Scholar 

  • Quigley HA, Dorman-Pease ME, Brown AE (1991a) Quantitative study of collagen and elastin of the optic nerve head and sclera in human and experimental monkey glaucoma. Curr Eye Res 10:877–888

    Article  PubMed  CAS  Google Scholar 

  • Quigley HA, Brown A, Dorman-Pease ME (1991b) Alterations in elastin of the optic nerve head in human and experimental glaucoma. Br J Ophthalmol 75:552–557

    Article  PubMed  CAS  Google Scholar 

  • Quigley HA, Pease ME, Thibault D (1994) Change in the appearance of elastin in the lamina cribrosa of glaucomatous optic nerve heads. Graefe’s Arch Clin Exp Ophthalmol 232:257–261

    Article  CAS  Google Scholar 

  • Quigley HA, Nickells RW, Kerrigan LA, Pease ME, Thibault DJ, Zack DJ (1995) Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci 36:774–786

    PubMed  CAS  Google Scholar 

  • Sappington RM, Carlson BJ, Crish SD, Calkins D (2010) The microbead occlusion model: a paradigm for induced ocular hypertension in rats and mice. Invest Ophthalmol Vis Sci 51:207–216

    Article  PubMed  Google Scholar 

  • Schultz DS, Lotz JC, Lee SM, Trinidad ML, Stewart JM (2008) Structural factors that mediate scleral stiffness. Invest Ophthalmol Vis Sci 49:4232–4236

    Article  PubMed  Google Scholar 

  • Schwartz M (2003) Neurodegeneration and neuroprotection in glaucoma: development of a therapeutic neuroprotective vaccine: the Friedenwald lecture. Invest Ophthalmol Vis Sci 44:1407–1411

    Article  PubMed  Google Scholar 

  • Senatorov V, Malyuka I, Fariss R, Wawrousek EF, Swaminathan S, Sharan SK, Tomarev S (2006) Expression of mutated mouse myocilin induces open-angle glaucoma in transgenic mice. J Neurosci 26:11903–11914

    Article  PubMed  CAS  Google Scholar 

  • Sethi A, Mao W, Wordinger RJ, Clark AF (2011) Transforming growth factor–β induces extracellular matrix protein cross-linking lysyl oxidase (LOX) genes in human trabecular meshwork cells. Invest Ophthalmol Vis Sci 52:5240–5250

    Article  PubMed  CAS  Google Scholar 

  • Sigal IA, Flanagan JG, Ethier CR (2005) Factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci 46:4189–4199

    Article  PubMed  Google Scholar 

  • Sigal IA, Yang H, Roberts MD, Burgoyne CF, Downs JC (2011) IOP-induced lamina cribrosa displacement and scleral canal expansion: an analysis of factor interactions using parameterized eye-specific models. Invest Ophthalmol Vis Sci 52:1896–1907

    Article  PubMed  Google Scholar 

  • Soto I, Pease ME, Son JL, Shi X, Quigley HA, Marsh-Armstrong N (2011) Retinal ganglion cell loss in a rat ocular hypertension model is sectorial and involves early optic nerve axon loss. Invest Ophthalmol Vis Sci 52:434–441

    Article  PubMed  CAS  Google Scholar 

  • Spoerl E, Boehm AG, Pillunat LE (2005) The influence of various substances on the biomechanical behavior of lamina cribrosa and peripapillary sclera. Invest Ophthalmol Vis Sci 46:1286–1290

    Article  PubMed  Google Scholar 

  • Steinhart MR, Cone FE, Nguyen C, Nguyen TD, Pease ME, Puk O, Graw J, Oglesby E, Quigley HA (2012) Mice with an induced mutation in collagen 8A2 develop larger eyes and are resistant to retinal ganglion cell damage in an experimental glaucoma model. Mol Vis 18:1093–1106

    PubMed  CAS  Google Scholar 

  • Stewart JM, Schultz DS, Lee O-T, Trinidad ML (2009) Collagen cross-links reduce corneal permeability. Invest Ophthalmol Vis Sci 50:1606–1612

    Article  PubMed  Google Scholar 

  • Strouthidis NG, Girard MJ (2013) Altering the way the optic nerve head responds to intraocular pressure—a potential approach to glaucoma therapy. Curr Opin Pharmacol 13:83–89

    Article  PubMed  CAS  Google Scholar 

  • Suh J, Dawson M, Hanes J (2005) Real-time multiple-particle tracking: applications to drug and gene delivery. Adv Drug Deliv Rev 57:63–78

    Article  PubMed  CAS  Google Scholar 

  • Summers Rada JA, Shelton S, Norton TT (2006) The sclera and myopia. Exp Eye Res 82:185–200

    Article  CAS  Google Scholar 

  • Sun D, Lye-Barthel M, Masland RH, Jakobs TC (2009) The morphology and spatial arrangement of astrocytes in the optic nerve head of the mouse. J Comp Neurol 516:1–19

    Article  PubMed  Google Scholar 

  • Tan JCH, Kalapesi FB, Coroneo MT (2006) Mechanosensitivity and the eye: cells coping with the pressure. Br J Ophthalmol 90:383–388

    Article  PubMed  CAS  Google Scholar 

  • Tanaka S, Avigad G, Brodsky B, Eikenberry EF (1988) Glycation induces expansion of the molecular packing of collagen. J Mol Biol 203:495–505

    Article  PubMed  CAS  Google Scholar 

  • Tezel G (2009) Fourth ARVO/Pfizer Ophthalmics Research Institute Conference Working Group. The role of glia, mitochondria, and the immune system in glaucoma. Invest Ophthalmol Vis Sci 50:1001–1012

    Article  PubMed  Google Scholar 

  • Tezel G, Yang X, Cai J (2005) Proteomic identification of oxidatively modified retinal proteins in a chronic pressure-induced rat model of glaucoma. Invest Ophthalmol Vis Sci 46:3177–3187

    Article  PubMed  Google Scholar 

  • Thorleifsson G, Magnusson KP, Sulem P, Walters GB, Gudbjartsson DF, Stefansson H, Jonsson T, Jonasdottir A, Jonasdottir A, Stefansdottir G, Masson G, Hardarson GA, Petursson H, Arnarsson A, Motallebipour M, Wallerman O, Wadelius C, Gulcher JR, Thorsteinsdottir U, Kong A, Jonasson F, Stefansson K (2007) Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Science 317:1397–1400

    Article  PubMed  CAS  Google Scholar 

  • Urban Z, Agapova O, Hucthagowder V, Yang P, Starcher BC, Hernandez MR (2007) Population differences in elastin matauration in optic nerve head tissue and astrocytes. Invest Ophthalmol Vis Sci 48:3209–3215

    Article  PubMed  Google Scholar 

  • Weinreb RN (2001) Enhancement of scleral macromolecular permeability with prostaglandins. Trans Am Ophthalmol Soc 99:319–343

    PubMed  CAS  Google Scholar 

  • Wollensak G, Iomdina E (2008) Crosslinking of scleral collagen in the rabbit using glyceraldehydes. J Cataract Refract Surg 34:651–656

    Article  PubMed  Google Scholar 

  • Wollensak G, Spoerl E, Seiler T (2003) Riboflavin/ultraviolet-A-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol 135:620–627

    Article  PubMed  CAS  Google Scholar 

  • Wong AA, Brown RE (2012) A neurobehavioral analysis of the prevention of visual impairment in the DBA/2J mouse model of glaucoma. Invest Ophthalmol Vis Sci 53:5956–5966

    Article  PubMed  Google Scholar 

  • Woo SL, Kobayashi AS, Schlegel WA, Lawrence C (1972) Nonlinear material properties of intact cornea and sclera. Exp Eye Res 14:29–39

    Article  PubMed  CAS  Google Scholar 

  • Yan D, McPheeters S, Johnson G, Utzinger U, Vande Geest JP (2011) Microstructural differences in the human posterior sclera as a function of age and race. Invest Ophthalmol Vis Sci 52:821–829

    Article  PubMed  Google Scholar 

  • Yang H, Williams G, Downs JC, Sigal IA, Roberts MD, Thompson H, Burgoyne CF (2011a) Posterior (outward) migration of the lamina cribrosa and early cupping in monkey experimental glaucoma. Invest Ophthalmol Vis Sci 52:7109–7121

    Article  PubMed  Google Scholar 

  • Zhou J, Rappaport EF, Tobias JW, Young TL (2006) Differential gene expression in mouse sclera during ocular development. Invest Ophthalmol Vis Sci 47:1794–1802

    Article  PubMed  Google Scholar 

  • Zhou Y, Grinchuk O, Tomarev SI (2008) Transgenic mice expressing the Tyr437His mutant of human myocilin protein develop glaucoma. Invest Ophthalmol Vis Sci 49:1932–1939

    Article  PubMed  Google Scholar 

  • Zode GS, Sethi A, Brun-Zinkernagel A-M, Chang I-F, Clark AF, Wordinger RJ (2011) Transforming growth factor-β2 increases extracellular matrix proteins in optic nerve head cells via activation of the Smad signaling pathway. Mol Vis 17:1745–1758

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the members of their laboratory who contributed to the work presented here: Mary Ellen Pease, Ericka Oglesby, Matthew Steinhart and Cathy Nguyen. Faculty collaborators who provided important expertise included Thao (Vicky) Nguyen, Baptiste Coudrillier, Keith Meek, Craig Boote, Justin Hanes, Gulgun Tezel, Don Zack and Derek Welsbie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frances E. Cone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quigley, H.A., Cone, F.E. Development of diagnostic and treatment strategies for glaucoma through understanding and modification of scleral and lamina cribrosa connective tissue. Cell Tissue Res 353, 231–244 (2013). https://doi.org/10.1007/s00441-013-1603-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1603-0

Keywords

Navigation