Skip to main content

Advertisement

Log in

Cytokine production suppression by culture supernatant of B16F10 cells and amelioration by Ganoderma lucidum polysaccharides in activated lymphocytes

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Some cytokines, such as interleukin-2 (IL-2), interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α), produced by lymphocytes might play an important role in anti-tumor immunity and their production is possibly suppressed by cancer. Amelioration of the suppression of cytokine production might contribute to cancer control. Ganoderma lucidum polysaccharides (Gl-PS), a versatile group of a component of G. lucidum and one with various bioactivities, might have this potential. In this study, analyses including reverse transcription and the polymerase chain reaction (RT-PCR), immunocytochemistry and Western blot were used to test the effects of Gl-PS on the production of IL-2, IFN-γ and TNF-α in mononuclear lymphocytes by incubating Gl-PS with mouse splenic mononuclear lymphocytes in the presence of B16F10 cell culture supernatant following activation by phytohemagglutinin. The RT-PCR, immunocytochemistry and Western blot assays showed that the production of IL-2, IFN-γ and TNF-α in mononuclear lymphocytes was suppressed by B16F10 cell culture supernatant at both the mRNA and protein levels, whereas the suppression was fully or partially ameliorated by Gl-PS. The amelioration by Gl-PS against the suppression of the production of IL-2, IFN-γ and TNF-α in mononuclear lymphocytes by B16F10 cell culture supernatant might contribute to cancer control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alshaker HA, Matalka KZ (2011) IFN-γ, IL-17 and TGF-β involvement in shaping the tumor microenvironment: the significance of modulating such cytokines in treating malignant solid tumors. Cancer Cell Int 11:33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bakir HY, Tomiyama C, Abo T (2011) Cytokine profile of murine malaria: stage-related production of inflammatory and anti-inflammatory cytokines. Biomed Res 32:203–208

    Article  CAS  PubMed  Google Scholar 

  • Beatty G, Paterson Y (2001) IFN-gamma-dependent inhibition of tumor angiogenesis by tumor-infiltrating CD4+ T cells requires tumor responsiveness to IFN-gamma. J Immunol 166:2276–2282

    Article  CAS  PubMed  Google Scholar 

  • Billiau A, Matthys P (2009) Interferon-gamma: a historical perspective. Cytokine Growth Factor Rev 20:97–113

    Article  CAS  PubMed  Google Scholar 

  • Cao LZ, Lin ZB (2002) Regulation on maturation and function of dendritic cells by Ganoderma lucidum polysaccharides. Immunol Lett 83:163–169

    Article  CAS  PubMed  Google Scholar 

  • Cao LZ, Lin ZB (2003) Regulatory effect of Ganoderma lucidum polysaccharides on cytotoxic T-lymphocytes induced by dendritic cells in vitro. Acta Pharmacol Sin 24:321–326

    PubMed  Google Scholar 

  • Cao QZ, Lin ZB (2006) Ganoderma lucidum polysaccharides peptide inhibits the growth of vascular endothelial cell and the induction of VEGF in human lung cancer cell. Life Sci 78:1457–1463

    Article  CAS  PubMed  Google Scholar 

  • Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B (1975) An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S A 72:3666–3670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chan WK, Cheung CC, Law HK, Lau YL, Chan GC (2008) Ganoderma lucidum polysaccharides can induce human monocytic leukemia cells into dendritic cells with immuno-stimulatory function. J Hematol Oncol 1:9

    Article  PubMed Central  PubMed  Google Scholar 

  • Dunn GP, Ikeda H, Bruce AT, Koebel C, Uppaluri R, Bui J, Chan R, Diamond M, White JM, Sheehan KC, Schreiber RD (2005) Interferon-gamma and cancer immunoediting. Immunol Res 32:231–245

    Article  CAS  PubMed  Google Scholar 

  • Dunn GP, Koebel CM, Schreiber RD (2006) Interferons, immunity and cancer immunoediting. Nat Rev Immunol 6:836–848

    Article  CAS  PubMed  Google Scholar 

  • Evans C, Dalgleish AG, Kumar D (2006) Review article: immune suppression and colorectal cancer. Aliment Pharmacol Ther 24:1163–1177

    Article  CAS  PubMed  Google Scholar 

  • Fallarino F, Gajewski TF (1999) Cutting edge: differentiation of antitumor CTL in vivo requires host expression of Stat1. J Immunol 163:4109–4113

    CAS  PubMed  Google Scholar 

  • Gabardi S, Catella J, Martin ST, Perrone R, Chandraker A, Magee CC, McDevitt-Potter LM (2011) Maintenance immunosuppression with intermittent intravenous IL-2 receptor antibody therapy in renal transplant recipients. Ann Pharmacother 45:e48

    Article  PubMed  Google Scholar 

  • Gaffen SL (2001) Signaling domains of the interleukin 2 receptor. Cytokine 14:63–77

    Article  CAS  PubMed  Google Scholar 

  • Geldenhuys W, Mbimba T, Bui T, Harrison K, Sutariya V (2011) Brain-targeted delivery of paclitaxel using glutathione-coated nanoparticles for brain cancers. J Drug Target 19:837–845

    Article  CAS  PubMed  Google Scholar 

  • Gough DJ, Levy DE, Johnstone RW, Clarke CJ (2008) IFNgamma signaling—does it mean JAK-STAT? Cytokine Growth Factor Rev 19:383–394

    Article  CAS  PubMed  Google Scholar 

  • Gross S, Walden P (2008) Immunosuppressive mechanisms in human tumors: why we still cannot cure cancer. Immunol Lett 116:7–14

    Article  CAS  PubMed  Google Scholar 

  • Hémar A, Subtil A, Lieb M, Morelon E, Hellio R, Dautry-Varsat A (1995) Endocytosis of interleukin 2 receptors in human T lymphocytes: distinct intracellular localization and fate of the receptor alpha, beta, and gamma chains. J Cell Biol 129:55–64

    Article  PubMed  Google Scholar 

  • Horras CJ, Lamb CL, Mitchell KA (2011) Regulation of hepatocyte fate by interferon-γ. Cytokine Growth Factor Rev 22:35–43

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  • Li WD, Zhang BD, Wei R, Liu JH, Lin ZB (2008) Reversal effect of Ganoderma lucidum polysaccharide on multidrug resistance in K562/ADM cell line. Acta Pharmacol Sin 29:620–627

    Article  CAS  PubMed  Google Scholar 

  • Lin ZB (2005) Cellular and molecular mechanisms of immuno-modulation by Ganoderma lucidum. J Pharmacol Sci 99:144–153

    Article  CAS  PubMed  Google Scholar 

  • Lin ZB, Zhang HN (2004) Anti-tumor and immunoregulatory activities of Ganoderma lucidum and its possible mechanisms. Acta Pharmacol Sin 25:1387–1395

    CAS  PubMed  Google Scholar 

  • Liu F, Liu J, Weng D, Chen Y, Song L, He Q, Chen J (2010) CD4+CD25+Foxp3+ regulatory T cells depletion may attenuate the development of silica-induced lung fibrosis in mice. PLoS ONE 5:e15404

  • MacGill RS, Davis TA, Macko J, Mauceri HJ, Weichselbaum RR, King CR (2007) Local gene delivery of tumor necrosis factor alpha can impact primary tumor growth and metastases through a host-mediated response. Clin Exp Metastasis 24:521–531

    Article  CAS  PubMed  Google Scholar 

  • Malek TR, Castro I (2010) Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity 33:153–165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miyake K, Akahoshi M, Nakashima H (2011) Th subset balance in lupus nephritis. J Biomed Biotechnol 2011:980286

    Article  PubMed Central  PubMed  Google Scholar 

  • Mocellin S, Rossi CR, Pilati P, Nitti D (2005) Tumor necrosis factor, cancer and anticancer therapy. Cytokine Growth Factor Rev 16:35–53

    Article  CAS  PubMed  Google Scholar 

  • Murugesan SR, King CR, Osborn R, Fairweather WR, O’Reilly EM, Thornton MO, Wei LL (2009) Combination of human tumor necrosis factor-alpha (hTNF-alpha) gene delivery with gemcitabine is effective in models of pancreatic cancer. Cancer Gene Ther 16:841–847

    Article  CAS  PubMed  Google Scholar 

  • Nelson BH, Willerford DM (1998) Biology of the interleukin-2 receptor. Adv Immunol 70:1–81

    Article  CAS  PubMed  Google Scholar 

  • Perrot-Applanat M, Vacher S, Toullec A, Pelaez I, Velasco G, Cormier F, Saad Hel S, Lidereau R, Baud V, Bièche I (2011) Similar NF-κB gene signatures in TNF-α treated human endothelial cells and breast tumor biopsies. PLoS ONE 6:e21589

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peschel W, Kump A, Prieto JM (2011) Effects of 20-hydroxyecdysone, Leuzea carthamoides extracts, dexamethasone and their combinations on the NF-κB activation in HeLa cells. J Pharm Pharmacol 63:1483–1495

    Article  CAS  PubMed  Google Scholar 

  • Prasad AS (2008) Zinc in human health: effect of zinc on immune cells. Mol Med 14:353–357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qian Y, Hong B, Shen L, Wu Z, Yao H, Zhang L (2013) B7-H4 enhances oncogenicity and inhibits apoptosis in pancreatic cancer cells. Cell Tissue Res 353:139–151

    Article  CAS  PubMed  Google Scholar 

  • Rickelt S (2012) Plakophilin-2: a cell-cell adhesion plaque molecule of selective and fundamental importance in cardiac functions and tumor cell growth. Cell Tissue Res 348:281–294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Romagnani S (2000) T-cell subsets (Th1 versus Th2). Ann Allergy Asthma Immunol 85:9–18

    Article  CAS  PubMed  Google Scholar 

  • Selvaduray KR, Radhakrishnan AK, Kutty MK, Nesaretnam K (2010) Palm tocotrienols inhibit proliferation of murine mammary cancer cells and induce expression of interleukin-24 mRNA. J Interferon Cytokine Res 30:909–916

    Article  CAS  PubMed  Google Scholar 

  • Serfling E, Avots A, Neumann M (1995) The architecture of the interleukin-2 promoter: a reflection of T lymphocyte activation. Biochim Biophys Acta 1263:181–200

    Article  PubMed  Google Scholar 

  • Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, Schreiber RD (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107–1111

    Article  CAS  PubMed  Google Scholar 

  • Sun LX, Chen LH, Lin ZB, Qin Y, Zhang JQ, Yang J, Ma J, Ye T, Li WD (2011a) Effects of Ganoderma lucidum polysaccharides on IEC-6 cell proliferation, migration and morphology of differentiation benefiting intestinal epithelium healing in vitro. J Pharm Pharmacol 63:1595–1603

    Article  CAS  PubMed  Google Scholar 

  • Sun LX, Lin ZB, Li XJ, Li M, Lu J, Duan XS, Ge ZH, Song YX, Xing EH, Li WD (2011b) Promoting effects of Ganoderma lucidum polysaccharides on B16F10 cells to activate lymphocytes. Basic Clin Pharmacol Toxicol 108:149–154

    Article  CAS  PubMed  Google Scholar 

  • Sun LX, Lin ZB, Duan XS, Lu J, Ge ZH, Li XJ, Li M, Xing EH, Jia J, Lan TF, Li WD (2011c) Ganoderma lucidum polysaccharides antagonize the suppression on lymphocytes induced by culture supernatants of B16F10 melanoma cells. J Pharm Pharmacol 63:725–735

    Article  CAS  PubMed  Google Scholar 

  • Sun LX, Lin ZB, Duan XS, Lu J, Ge ZH, Song YX, Li XJ, Li M, Xing EH, Yang N, Li WD (2012a) Stronger cytotoxicity in CTLs with granzyme B and porforin was induced by Ganoderma lucidum polysaccharides acting on B16F10 cells. Biomed Prev Nutr 2:113–118. doi:10.1016/j.bionut.2012.01.001

    Article  Google Scholar 

  • Sun LX, Lin ZB, Duan XS, Lu J, Ge ZH, Li XF, Li XJ, Li M, Xing EH, Song YX, Jia J, Li WD (2012b) Enhanced MHC class I and costimulatory molecules on B16F10 cells by Ganoderma lucidum polysaccharides. J Drug Target 20:582–592

    Article  CAS  PubMed  Google Scholar 

  • Sun LX, Li WD, Lin ZB, Duan XS, Li XF, Yang N, Lan TF, Li M, Sun Y, Yu M, Lu J (2014a) Protection against lung cancer patient plasma-induced lymphocyte suppression by Ganoderma lucidum polysaccharides. Cell Physiol Biochem 33:289–299

    Article  CAS  PubMed  Google Scholar 

  • Sun LX, Lin ZB, Duan XS, Qi HH, Yang N, Li M, Xing EH, Sun Y, Yu M, Li WD, Lu J (2014b) Suppression of the production of transforming growth factor β1, interleukin-10, and vascular endothelial growth factor in the B16F10 cells by Ganoderma lucidum polysaccharides. J Interferon Cytokine Res 34:667–675

    Article  CAS  PubMed  Google Scholar 

  • Swann JB, Smyth MJ (2007) Immune surveillance of tumors. J Clin Invest 117:1137–1146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ubukata H, Konishi S, Nagata H, Kasuga N, Watanabe Y, Goto Y, Nakada I, Tabuchi T (2010) Significance of preoperative evaluations of tumor necrosis factor-alpha, the granulocyte/lymphocyte ratio and their correlation with regard to outcome in gastric cancer patients. Dig Surg 27:324–330

    Article  CAS  PubMed  Google Scholar 

  • Whiteside TL (2006) Immune suppression in cancer: effects on immune cells, mechanisms and future therapeutic intervention. Semin Cancer Biol 16:3–15

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Wen Y, Miao X, Yang Z (2014) NT5E and FcGBP as key regulators of TGF-1-induced epithelial-mesenchymal transition (EMT) are associated with tumor progression and survival of patients with gallbladder cancer. Cell Tissue Res 355:365–374

  • Xiong Y, Cao LP, Rao HL, Cai MY, Liang LZ, Liu JH (2012) Clinical significance of peritumoral lymphatic vessel density and lymphatic vessel invasion detected by D2-40 immunostaining in FIGO Ib1-IIa squamous cell cervical cancer. Cell Tissue Res 348:515–522

    Article  CAS  PubMed  Google Scholar 

  • Yu A, Malek TR (2001) The proteasome regulates receptor-mediated endocytosis of interleukin-2. J Biol Chem 276:381–385

    Article  CAS  PubMed  Google Scholar 

  • Yu WG, Ogawa M, Mu J, Umehara K, Tsujimura T, Fujiwara H, Hamaoka T (1997) IL-12-induced tumor regression correlates with in situ activity of IFN-gamma produced by tumor-infiltrating cells and its secondary induction of anti-tumor pathways. J Leukoc Biol 62:450–457

    CAS  PubMed  Google Scholar 

  • Zhu XL, Lin ZB (2005) Effects of Ganoderma lucidum polysaccharides on proliferation and cytotoxicity of cytokine-induced killer cells. Acta Pharmacol Sin 26:1130–1137

    Article  CAS  PubMed  Google Scholar 

  • Zhu XL, Chen AF, Lin ZB (2007) Ganoderma lucidum polysaccharides enhance the function of immunological effector cells in immunosuppressed mice. J Ethnopharmacol 111:219–226

    Article  CAS  PubMed  Google Scholar 

  • Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5:263–274

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Shuqian Lin of the Fuzhou Institute of Green Valley Bio-Pharm Technology for providing the Gl-PS.

Conflict of interest

The authors declare that they have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, LX., Li, WD., Lin, ZB. et al. Cytokine production suppression by culture supernatant of B16F10 cells and amelioration by Ganoderma lucidum polysaccharides in activated lymphocytes. Cell Tissue Res 360, 379–389 (2015). https://doi.org/10.1007/s00441-014-2083-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-2083-6

Keywords

Navigation