Skip to main content
Log in

Tob1 is expressed in developing and adult gonads and is associated with the P-body marker, Dcp2

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Tob1 is a member of the BTG/TOB family of proteins with established antiproliferative function. In Danio rerio and Xenopus laevis, the Tob1 gene is expressed from the one-cell stage through to early gastrula stages, followed in later development by discrete expression in many tissues including the notochord and somites. In both mouse and human, Tob1 is expressed in many adult tissues including the testis and ovary; however, the specific cell types are unknown. We examine Tob1 gene expression in mouse in developing germ cells and in sorted male germ cells (gonocytes, spermatogonia, pachytene spermatocytes and round spermatids) by reverse transcription and droplet digital polymerase chain reaction (RT-ddPCR) and in adult ovary and testis by immunofluorescence with anti-Tob1 protein staining. By RT-ddPCR, Tob1 expression was low in developing male germ cells but was highly expressed in round spermatids. In developing female germ cells undergoing entry into meiosis, it increased 10-fold. Tob1 was also highly expressed in round spermatids and in oocytes in all stages of folliculogenesis. Notably, a marker for P-bodies, Dcp-2, was also highly expressed in round spermatids and all oocyte stages examined. The cytoplasmic presence of Tob1 protein in round spermatids and oocytes and the association of Tob1 protein with Dcp2 in both cell types suggest that Tob1 protein plays a role in post-transcriptional mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CCR4:

Carbon catabolite repression 4

CAF1:

Ccr4p associated factor

CPEB1:

Cytoplasmic polyadenylation binding protein 1

PABP:

Poly(A)binding protein:

PAM2:

Poly(A)-binding protein interacting motif 2

NOT:

Negative on TATA-less

References

  • Adhikari D, Flohr G, Gorre N, Shen Y, Yang H, Lundin E, Lan Z, Gambello MJ, Liu K (2009) Disruption of Tsc2 in oocytes leads to overactivation of the entire pool of primordial follicles. Mol Hum Reprod 15:765–770

    Article  CAS  PubMed  Google Scholar 

  • Au PC, Whitley J, Vaux D, Selwood L, Familari M (2008) Identification of novel and known ovary-specific genes including ZP2, in a marsupial, the stripe-faced dunnart. Mol Reprod Dev 75:318–325

    Article  CAS  PubMed  Google Scholar 

  • Baleato RM, Aitken RJ, Roman SD (2005) Vitamin A regulation of BMP4 expression in the male germ line. Dev Biol 286:78–90

    Article  CAS  PubMed  Google Scholar 

  • Balhorn R, Weston S, Thomas C, Wyrobek AJ (1984) DNA packaging in mouse spermatids. Synthesis of protamine variants and four transition proteins. Exp Cell Res 150:298–308

    Article  CAS  PubMed  Google Scholar 

  • Bergen JA van den, Miles DC, Sinclair AH, Western PS (2009) Normalizing gene expression levels in mouse fetal germ cells. Biol Reprod 81:362–370

  • Bourbon HM, Gonzy-Treboul G, Peronnet F, Alin MF, Ardourel C, Benassayag C, Cribbs D, Deutsch J, Ferrer P, Haenlin M, Lepesant JA, Noselli S, Vincent A (2002) A P-insertion screen identifying novel X-linked essential genes in Drosophila. Mech Dev 110:71–83

    Article  CAS  PubMed  Google Scholar 

  • Buchan JR (2014) mRNP granules. Assembly, function, and connections with disease. RNA Biol 11:1019–1030

    Article  PubMed  PubMed Central  Google Scholar 

  • Cain S, Martinez G, Kokkinos MI, Turner K, Richardson RJ, Abud HE, Huelsken J, Robinson ML, Iongh RU de (2008) Differential requirement for beta-catenin in epithelial and fiber cells during lens development. Dev Biol 321:420–433

  • Chang JS, Tan L, Schedl P (1999) The Drosophila CPEB homolog, orb, is required for oskar protein expression in oocytes. Dev Biol 215:91–106

    Article  CAS  PubMed  Google Scholar 

  • Chen PJ, Ellis RE (2000) TRA-1A regulates transcription of fog-3 which controls germ cell fate in C. elegans. Development 127:3119–3129

    CAS  PubMed  Google Scholar 

  • Chen PJ, Singal A, Kimble J, Ellis RE (2000) A novel member of the tob family of proteins controls sexual fate in Caenorhabditis elegans germ cells. Dev Biol 217:77–90

    Article  CAS  PubMed  Google Scholar 

  • Chen PJ, Cho S, Jin SW, Ellis RE (2001) Specification of germ cell fates by FOG-3 has been conserved during nematode evolution. Genetics 158:1513–1525

    CAS  PubMed  PubMed Central  Google Scholar 

  • Collart MA, Panasenko OO (2012) The Ccr4-not complex. Gene 492:42–53

    Article  CAS  PubMed  Google Scholar 

  • Doidge R, Mittal S, Aslam A, Winkler GS (2012) Deadenylation of cytoplasmic mRNA by the mammalian Ccr4-Not complex. Biochem Soc Trans 40:896–901

    Article  CAS  PubMed  Google Scholar 

  • Eulalio A, Behm-Ansmant I, Izaurralde E (2007) P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol 8:9–22

    Article  CAS  PubMed  Google Scholar 

  • Ezzeddine N, Chang TC, Zhu W, Yamashita A, Chen CY, Zhong Z, Yamashita Y, Zheng D, Shyu AB (2007) Human TOB, an antiproliferative transcription factor, is a poly(A)-binding protein-dependent positive regulator of cytoplasmic mRNA deadenylation. Mol Cell Biol 27:7791–7801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan SJ, Marchand V, Ephrussi A (2011) Drosophila Ge-1 promotes P body formation and oskar mRNA localization. PLoS One 6:e20612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flemr M, Ma J, Schultz RM, Svoboda P (2010) P-body loss is concomitant with formation of a messenger RNA storage domain in mouse oocytes. Biol Reprod 82:1008–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gröndahl ML, Borup R, Vikesa J, Ernst E, Andersen CY, Lykke-Hartmann K (2013) The dormant and the fully competent oocyte: comparing the transcriptome of human oocytes from primordial follicles and in metaphase II. Mol Hum Reprod 19:600–617

    Article  PubMed  Google Scholar 

  • Hosoda N, Funakoshi Y, Hirasawa M, Yamagishi R, Asano Y, Miyagawa R, Ogami K, Tsujimoto M, Hoshino S (2011) Anti-proliferative protein Tob negatively regulates CPEB3 target by recruiting Caf1 deadenylase. EMBO J 30:1311–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubank M, Schatz DG (1994) Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Res 22:5640–5648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikematsu N, Yoshida Y, Kawamura-Tsuzuku J, Ohsugi M, Onda M, Hirai M, Fujimoto J, Yamamoto T (1999) Tob2, a novel anti-proliferative Tob/BTG1 family member, associates with a component of the CCR4 transcriptional regulatory complex capable of binding cyclin-dependent kinases. Oncogene 18:7432–7441

    Article  CAS  PubMed  Google Scholar 

  • Ivshina M, Lasko P, Richter JD (2014) Cytoplasmic polyadenylation element binding proteins in development, health, and disease. Annu Rev Cell Dev Biol 30:393–415

    Article  CAS  PubMed  Google Scholar 

  • Jagarlamudi K, Rajkovic A (2012) Oogenesis: transcriptional regulators and mouse models. Mol Cell Endocrinol 356:31–39

    Article  CAS  PubMed  Google Scholar 

  • Jia S, Meng A (2007) Tob genes in development and homeostasis. Dev Dyn 236:913–921

    Article  CAS  PubMed  Google Scholar 

  • Kleene KC, Distel RJ, Hecht NB (1984) Translational regulation and deadenylation of a protamine mRNA during spermiogenesis in the mouse. Dev Biol 105:71–79

    Article  CAS  PubMed  Google Scholar 

  • Kotaja N, Bhattacharyya SN, Jaskiewicz L, Kimmins S, Parvinen M, Filipowicz W, Sassone-Corsi P (2006) The chromatoid body of male germ cells: similarity with processing bodies and presence of Dicer and microRNA pathway components. Proc Natl Acad Sci U S A 103:2647–2652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuda S, Kawamura-Tsuzuku J, Ohsugi M, Yoshida M, Emi M, Nakamura Y, Onda M, Yoshida Y, Nishiyama A, Yamamoto T (1996) Tob, a novel protein that interacts with p185erbB2, is associated with anti-proliferative activity. Oncogene 12:705–713

    CAS  PubMed  Google Scholar 

  • McCarter J, Bartlett B, Dang T, Schedl T (1999) On the control of oocyte meiotic maturation and ovulation in Caenorhabditis elegans. Dev Biol 205:111–128

    Article  CAS  PubMed  Google Scholar 

  • McIver SC, Stanger SJ, Santarelli DM, Roman SD, Nixon B, McLaughlin EA (2012) A unique combination of male germ cell miRNAs coordinates gonocyte differentiation. PLoS One 7:e35553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyasaka T, Morita M, Ito K, Suzuki T, Fukuda H, Takeda S, Inoue J, Semba K, Yamamoto T (2008) Interaction of antiproliferative protein Tob with the CCR4-NOT deadenylase complex. Cancer Sci 99:755–761

    Article  CAS  PubMed  Google Scholar 

  • Moor CH de, Meijer H, Lissenden S (2005) Mechanisms of translational control by the 3′ UTR in development and differentiation. Semin Cell Dev Biol 16:49–58

  • Ogami K, Hosoda N, Funakoshi Y, Hoshino S (2014) Antiproliferative protein Tob directly regulates c-myc proto-oncogene expression through cytoplasmic polyadenylation element-binding protein CPEB. Oncogene 33:55–64

    Article  CAS  PubMed  Google Scholar 

  • Racki WJ, Richter JD (2006) CPEB controls oocyte growth and follicle development in the mouse. Development 133:4527–4537

    Article  CAS  PubMed  Google Scholar 

  • Schisa JA (2012) New insights into the regulation of RNP granule assembly in oocytes. Int Rev Cell Mol Biol 295:233–289

    Article  CAS  PubMed  Google Scholar 

  • Shi K, Zhang L, Meng A (2004) Cloning and expression analysis of zebrafish tob1 gene. Dev Genes Evol 214:309–311

    Article  CAS  PubMed  Google Scholar 

  • Shirai YT, Suzuki T, Morita M, Takahashi A, Yamamoto T (2014) Multifunctional roles of the mammalian CCR4-NOT complex in physiological phenomena. Front Genet 5:286

    Article  PubMed  PubMed Central  Google Scholar 

  • Sutherland JM, Fraser BA, Sobinoff AP, Pye VJ, Davidson TL, Siddall NA, Koopman P, Hime GR, McLaughlin EA (2014) Developmental expression of Musashi-1 and Musashi-2 RNA-binding proteins during spermatogenesis: analysis of the deleterious effects of dysregulated expression. Biol Reprod 90:92

    Article  PubMed  Google Scholar 

  • Tay J, Richter JD (2001) Germ cell differentiation and synaptonemal complex formation are disrupted in CPEB knockout mice. Dev Cell 1:201–213

    Article  CAS  PubMed  Google Scholar 

  • Voronina E, Seydoux G, Sassone-Corsi P, Nagamori I (2011) RNA granules in germ cells. Cold Spring Harb Perspect Biol 3.pii:a002774

    Google Scholar 

  • Western P (2009) Foetal germ cells: striking the balance between pluripotency and differentiation. Int J Dev Biol 53:393–409

    Article  CAS  PubMed  Google Scholar 

  • Western PS, Ralli RA, Wakeling SI, Lo C, Bergen JA van den, Miles DC, Sinclair AH (2011) Mitotic arrest in teratoma susceptible fetal male germ cells. PLoS One 6:e20736

  • Winkler GS (2010) The mammalian anti-proliferative BTG/Tob protein family. J Cell Physiol 222:66–72

    Article  CAS  PubMed  Google Scholar 

  • Xiong B, Rui Y, Zhang M, Shi K, Jia S, Tian T, Yin K, Huang H, Lin S, Zhao X, Chen Y, Chen YG, Lin SC, Meng A (2006) Tob1 controls dorsal development of zebrafish embryos by antagonizing maternal beta-catenin transcriptional activity. Dev Cell 11:225–238

    Article  CAS  PubMed  Google Scholar 

  • Yoshida Y, Matsuda S, Yamamoto T (1997) Cloning and characterization of the mouse tob gene. Gene 191:109–113

    Article  CAS  PubMed  Google Scholar 

  • Yoshida Y, Tanaka S, Umemori H, Minowa O, Usui M, Ikematsu N, Hosoda E, Imamura T, Kuno J, Yamashita T, Miyazono K, Noda M, Noda T, Yamamoto T (2000) Negative regulation of BMP/Smad signaling by Tob in osteoblasts. Cell 103:1085–1097

    Article  CAS  PubMed  Google Scholar 

  • Yoshida Y, Bubnoff A von, Ikematsu N, Blitz IL, Tsuzuku JK, Yoshida EH, Umemori H, Miyazono K, Yamamoto T, Cho KW (2003) Tob proteins enhance inhibitory Smad-receptor interactions to repress BMP signaling. Mech Dev 120:629–637

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Familari.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest in presenting the material, information or techniques described in this paper.

Additional information

Gary R. Hime and Mary Familari are joint senior authors.

These studies were supported by funds provided to M.F. by the School of Biosciences, University of Melbourne.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 18 kb)

Figure S1

In situ hybridisation with Tob1 sense (a, c) and antisense (b, d) riboprobes in mouse ovary (a, b) and mouse testis (c, d). a In frozen sections of the ovary, hybridisation signal with the sense probe is present in the follicular granulosa cells of an antral follicle but not in the oocyte cytoplasm (asterisk).b The antisense probe shows intense labelling in follicular cells but specific staining is present in the oocyte cytoplasm (asterisk). c In paraffin sections of the testis, no specific staining is observed with the sense probe in the seminiferous tubules. d Intense specific labelling is detected with the antisense probe in the round spermatids (solid arrowheads) with a weaker signal being detected in elongating spermatids (open arrowheads). Inset in d Higher magnification of labelled round spermatids (solid arrowhead) and elongating spermatids (open arrowhead). Bar 100 μm (a–d), 50 μm (inset). (GIF 109 kb)

High Resolution Image (TIF 12325 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shapouri, F., Saeidi, S., de Iongh, R.U. et al. Tob1 is expressed in developing and adult gonads and is associated with the P-body marker, Dcp2. Cell Tissue Res 364, 443–451 (2016). https://doi.org/10.1007/s00441-015-2328-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2328-z

Keywords

Navigation