Skip to main content

Advertisement

Log in

Patient-specific neural progenitor cells derived from induced pluripotent stem cells offer a promise of good models for mitochondrial disease

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Mitochondria are the primary generators of ATP in eukaryotic cells through the process of oxidative phosphorylation. Mitochondria are also involved in several other important cellular functions including regulation of intracellular Ca2+, cell signaling and apoptosis. Mitochondrial dysfunction causes disease and since it is not possible to perform repeated studies in humans, models are essential to enable us to investigate the mechanisms involved. Recently, the discovery of induced pluripotent stem cells (iPSCs), made by reprogramming adult somatic cells (Takahashi and Yamanaka 2006; Yamanaka and Blau 2010), has provided a unique opportunity for studying aspects of disease mechanisms in patient-specific cells and tissues. Reprogramming cells to neuronal lineage such as neural progenitor cells (NPCs) generated from the neural induction of reprogrammed iPSCs can thus provide a useful model for investigating neurological disease mechanisms including those caused by mitochondrial dysfunction. In addition, NPCs display a huge clinical potential in drug screening and therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arduino DM, Esteves AR, Swerdlow RH, Cardoso SM (2015) A cybrid cell model for the assessment of the link between mitochondrial deficits and sporadic Parkinson's disease. Methods Mol Biol 1265:415–424

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baranowska I, Jaderlund KH, Nennesmo I, Holmqvist E, Heidrich N, Larsson NG, Andersson G, Wagner EG, Hedhammar A, Wibom R, Andersson L (2009) Sensory ataxic neuropathy in golden retriever dogs is caused by a deletion in the mitochondrial tRNATyr gene. PLoS Genet 5(5):e1000499

    PubMed  PubMed Central  Google Scholar 

  • Bartolak-Suki E, Imsirovic J, Nishibori Y, Krishnan R, Suki B (2017) Regulation of mitochondrial structure and dynamics by the cytoskeleton and mechanical factors. Int J Mol Sci 18(8)

    PubMed Central  Google Scholar 

  • Ben Jehuda R, Shemer Y, Binah O (2018) Genome editing in induced pluripotent stem cells using CRISPR/Cas9. Stem Cell Rev Rep 14(3):323–336

    CAS  PubMed  Google Scholar 

  • Bhatti JS, Bhatti GK, Reddy PH (2017) Mitochondrial dysfunction and oxidative stress in metabolic disorders - a step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol basis Dis 1863(5):1066–1077

    CAS  PubMed  Google Scholar 

  • Blurton-Jones M, Kitazawa M, Martinez-Coria H, Castello NA, Muller FJ, Loring JF, Yamasaki TR, Poon WW, Green KN, LaFerla FM (2009) Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci U S A 106(32):13594–13599

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carling PJ, Cree LM, Chinnery PF (2011) The implications of mitochondrial DNA copy number regulation during embryogenesis. Mitochondrion 11(5):686–692

    CAS  PubMed  Google Scholar 

  • Casarosa S, Bozzi Y, Conti L (2014) Neural stem cells: ready for therapeutic applications? Mol Cell Ther 2:31

    PubMed  PubMed Central  Google Scholar 

  • Chen KG, Mallon BS, McKay RD, Robey PG (2014) Human pluripotent stem cell culture: considerations for maintenance, expansion, and therapeutics. Cell Stem Cell 14(1):13–26

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen KS, Sakowski SA, Feldman EL (2016) Intraspinal stem cell transplantation for amyotrophic lateral sclerosis. Ann Neurol 79(3):342–353

    PubMed  PubMed Central  Google Scholar 

  • Cheng L, Hansen NF, Zhao L, Du Y, Zou C, Donovan FX, Chou BK, Zhou G, Li S, Dowey SN, Ye Z, Program NCS, Chandrasekharappa SC, Yang H, Mullikin JC, Liu PP (2012) Low incidence of DNA sequence variation in human induced pluripotent stem cells generated by nonintegrating plasmid expression. Cell Stem Cell 10(3):337–344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cherry AB, Gagne KE, McLoughlin EM, Baccei A, Gorman B, Hartung O, Miller JD, Zhang J, Zon RL, Ince TA, Neufeld EJ, Lerou PH, Fleming MD, Daley GQ, Agarwal S (2013) Induced pluripotent stem cells with a mitochondrial DNA deletion. Stem Cells 31(7):1287–1297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chichagova V, Hallam D, Collin J, Buskin A, Saretzki G, Armstrong L, Yu-Wai-Man P, Lako M, Steel DH (2017) Human iPSC disease modelling reveals functional and structural defects in retinal pigment epithelial cells harbouring the m.3243A > G mitochondrial DNA mutation. Sci Rep 7(1):12320

    PubMed  PubMed Central  Google Scholar 

  • Chou SJ, Ko YL, Yang YH, Yarmishyn AA, Wu YT, Chen CT, Lee HC, Wei YH, Chiou SH (2018) Generation of two isogenic human induced pluripotent stem cell lines from a 15year-old female patient with MERRF syndrome and A8344G mutation of mitochondrial DNA. Stem Cell Res 30:201–205

    CAS  PubMed  Google Scholar 

  • Chukwurah E, Osmundsen A, Davis SW, Lizarraga SB (2019) All together now: modeling the interaction of neural with non-neural systems using organoid models. Front Neurosci 13:582

    PubMed  PubMed Central  Google Scholar 

  • Clayton DA (1982) Replication of animal mitochondrial DNA. Cell 28(4):693–705

    CAS  PubMed  Google Scholar 

  • Consortium, H. D. i (2012) Induced pluripotent stem cells from patients with Huntington's disease show CAG-repeat-expansion-associated phenotypes. Cell Stem Cell 11(2):264–278

    Google Scholar 

  • Dawson TM, Golde TE, Lagier-Tourenne C (2018) Animal models of neurodegenerative diseases. Nat Neurosci 21(10):1370–1379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ebert AD, Yu J, Rose FF Jr, Mattis VB, Lorson CL, Thomson JA, Svendsen CN (2009) Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457(7227):277–280

    CAS  PubMed  Google Scholar 

  • Elkabetz Y, Panagiotakos G, Al Shamy G, Socci ND, Tabar V, Studer L (2008) Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev 22(2):152–165

    CAS  PubMed  PubMed Central  Google Scholar 

  • Enriquez JA, Chomyn A, Attardi G (1995) MtDNA mutation in MERRF syndrome causes defective aminoacylation of tRNA (Lys) and premature translation termination. Nat Genet 10(1):47–55

    CAS  PubMed  Google Scholar 

  • Fang W, Huang CC, Chu NS, Lee CC, Chen RS, Pang CY, Shih KD, Wei YH (1994) Myoclonic epilepsy with ragged-red fibers (MERRF) syndrome: report of a Chinese family with mitochondrial DNA point mutation in tRNA(Lys) gene. Muscle Nerve 17(1):52–57

    CAS  PubMed  Google Scholar 

  • Folmes CD, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ, Dzeja PP, Ikeda Y, Perez-Terzic C, Terzic A (2011) Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab 14(2):264–271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman JR, Nunnari J (2014) Mitochondrial form and function. Nature 505(7483):335–343

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh SS, Swerdlow RH, Miller SW, Sheeman B, Parker WD Jr, Davis RE (1999) Use of cytoplasmic hybrid cell lines for elucidating the role of mitochondrial dysfunction in Alzheimer's disease and Parkinson's disease. Ann N Y Acad Sci 893:176–191

    CAS  PubMed  Google Scholar 

  • Greggains GD, Lister LM, Tuppen HAL, Zhang Q, Needham LH, Prathalingam N, Hyslop LA, Craven L, Polanski Z, Murdoch AP, Turnbull DM, Herbert M (2014) Therapeutic potential of somatic cell nuclear transfer for degenerative disease caused by mitochondrial DNA mutations. Sci Rep 4:3844

    PubMed  PubMed Central  Google Scholar 

  • Griffin TA, Anderson HC, Wolfe JH (2015) Ex vivo gene therapy using patient iPSC-derived NSCs reverses pathology in the brain of a homologous mouse model. Stem Cell Reports 4(5):835–846

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haack TB, Kopajtich R, Freisinger P, Wieland T, Rorbach J, Nicholls TJ, Baruffini E, Walther A, Danhauser K, Zimmermann FA, Husain RA, Schum J, Mundy H, Ferrero I, Strom TM, Meitinger T, Taylor RW, Minczuk M, Mayr JA, Prokisch H (2013) ELAC2 mutations cause a mitochondrial RNA processing defect associated with hypertrophic cardiomyopathy. Am J Hum Genet 93(2):211–223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hakli S, Luotonen M, Sorri M, Majamaa K (2015) Mutations in the two ribosomal RNA genes in mitochondrial DNA among Finnish children with hearing impairment. BMC Med Genet 16:3

    PubMed  PubMed Central  Google Scholar 

  • Hallas T, Eisen B, Shemer Y, Ben Jehuda R, Mekies LN, Naor S, Schick R, Eliyahu S, Reiter I, Vlodavsky E, Katz YS, Ounap K, Lorber A, Rodenburg R, Mandel H, Gherghiceanu M, Binah O (2018) Investigating the cardiac pathology of SCO2-mediated hypertrophic cardiomyopathy using patients induced pluripotent stem cell-derived cardiomyocytes. J Cell Mol Med 22(2):913–925

    CAS  PubMed  Google Scholar 

  • Hamalainen RH (2016) Mitochondrial DNA mutations in iPS cells: mtDNA integrity as standard iPSC selection criteria? EMBO J 35(18):1960–1962

    PubMed  PubMed Central  Google Scholar 

  • Hamalainen RH, Manninen T, Koivumaki H, Kislin M, Otonkoski T, Suomalainen A (2013) Tissue- and cell-type-specific manifestations of heteroplasmic mtDNA 3243A>G mutation in human induced pluripotent stem cell-derived disease model. Proc Natl Acad Sci U S A 110(38):E3622–E3630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamalainen RH, Suomalainen A (2016) Generation and characterization of induced pluripotent stem cells from patients with mtDNA mutations. Methods Mol Biol 1353:65–75

    CAS  PubMed  Google Scholar 

  • Hartenstein V, Stollewerk A (2015) The evolution of early neurogenesis. Dev Cell 32(4):390–407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hatakeyama H, Goto Y (2016) Concise review: heteroplasmic mitochondrial DNA mutations and mitochondrial diseases: toward iPSC-based disease modeling, drug discovery, and regenerative therapeutics. Stem Cells 34(4):801–808

    CAS  PubMed  Google Scholar 

  • Holmes JB, Akman G, Wood SR, Sakhuja K, Cerritelli SM, Moss C, Bowmaker MR, Jacobs HT, Crouch RJ, Holt IJ (2015) Primer retention owing to the absence of RNase H1 is catastrophic for mitochondrial DNA replication. Proc Natl Acad Sci U S A 112(30):9334–9339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holt IJ, Lorimer HE, Jacobs HT (2000) Coupled leading- and lagging-strand synthesis of mammalian mitochondrial DNA. Cell 100(5):515–524

    CAS  PubMed  Google Scholar 

  • Humble MM, Young MJ, Foley JF, Pandiri AR, Travlos GS, Copeland WC (2013) Polg2 is essential for mammalian embryogenesis and is required for mtDNA maintenance. Hum Mol Genet 22(5):1017–1025

    CAS  PubMed  Google Scholar 

  • Ikeda T, Osaka H, Shimbo H, Tajika M, Yamazaki M, Ueda A, Murayama K, Yamagata T (2018) Mitochondrial DNA 3243A>T mutation in a patient with MELAS syndrome. Hum Genome Var 5:25

    PubMed  PubMed Central  Google Scholar 

  • Ingraham CA, Burwell LS, Skalska J, Brookes PS, Howell RL, Sheu SS, Pinkert CA (2009) NDUFS4: creation of a mouse model mimicking a complex I disorder. Mitochondrion 9(3):204–210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jun AS, Trounce IA, Brown MD, Shoffner JM, Wallace DC (1996) Use of transmitochondrial cybrids to assign a complex I defect to the mitochondrial DNA-encoded NADH dehydrogenase subunit 6 gene mutation at nucleotide pair 14459 that causes Leber hereditary optic neuropathy and dystonia. Mol Cell Biol 16(3):771–777

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang E, Wang X, Tippner-Hedges R, Ma H, Folmes CD, Gutierrez NM, Lee Y, Van Dyken C, Ahmed R, Li Y, Koski A, Hayama T, Luo S, Harding CO, Amato P, Jensen J, Battaglia D, Lee D, Wu D, Terzic A, Wolf DP, Huang T, Mitalipov S (2016) Age-related accumulation of somatic mitochondrial DNA mutations in adult-derived human iPSCs. Cell Stem Cell 18(5):625–636

    CAS  PubMed  Google Scholar 

  • Kaufmann P, Engelstad K, Wei Y, Kulikova R, Oskoui M, Sproule DM, Battista V, Koenigsberger DY, Pascual JM, Shanske S, Sano M, Mao X, Hirano M, Shungu DC, Dimauro S, De Vivo DC (2011) Natural history of MELAS associated with mitochondrial DNA m.3243A>G genotype. Neurology 77(22):1965–1971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keeney PM, Dunham LD, Quigley CK, Morton SL, Bergquist KE, Bennett JP Jr (2009) Cybrid models of Parkinson's disease show variable mitochondrial biogenesis and genotype-respiration relationships. Exp Neurol 220(2):374–382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keilland E, Rupar CA, Prasad AN, Tay KY, Downie A, Prasad C (2016) The expanding phenotype of MELAS caused by the m.3291T > C mutation in the MT-TL1 gene. Mol Genet Metab Rep 6:64–69

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khacho M, Harris R, Slack RS (2019) Mitochondria as central regulators of neural stem cell fate and cognitive function. Nat Rev Neurosci 20(1):34–48

    CAS  PubMed  Google Scholar 

  • Khan SM, Smigrodzki RM, Swerdlow RH (2007) Cell and animal models of mtDNA biology: progress and prospects. Am J Physiol Cell Physiol 292(2):C658–C669

    CAS  PubMed  Google Scholar 

  • Khoo ML, Tao H, Meedeniya AC, Mackay-Sim A, Ma DD (2011) Transplantation of neuronal-primed human bone marrow mesenchymal stem cells in hemiparkinsonian rodents. PLoS One 6(5):e19025

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SU, Lee HJ, Kim YB (2013) Neural stem cell-based treatment for neurodegenerative diseases. Neuropathology 33(5):491–504

    PubMed  Google Scholar 

  • Ko HC, Gelb BD (2014) Concise review: drug discovery in the age of the induced pluripotent stem cell. Stem Cells Transl Med 3(4):500–509

    CAS  PubMed  PubMed Central  Google Scholar 

  • Korhonen JA, Gaspari M, Falkenberg M (2003) TWINKLE has 5′ -> 3' DNA helicase activity and is specifically stimulated by mitochondrial single-stranded DNA-binding protein. J Biol Chem 278(49):48627–48632

    CAS  PubMed  Google Scholar 

  • Krasich R, Copeland WC (2017) DNA polymerases in the mitochondria: a critical review of the evidence. Front Biosci (Landmark Ed) 22:692–709

    CAS  Google Scholar 

  • Kuhlbrandt W (2015) Structure and function of mitochondrial membrane protein complexes. BMC Biol 13:89

    PubMed  PubMed Central  Google Scholar 

  • Kumari D, Swaroop M, Southall N, Huang W, Zheng W, Usdin K (2015) High-throughput screening to identify compounds that increase fragile X mental retardation protein expression in neural stem cells differentiated from fragile X syndrome patient-derived induced pluripotent stem cells. Stem Cells Transl Med 4(7):800–808

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee G, Ramirez CN, Kim H, Zeltner N, Liu B, Radu C, Bhinder B, Kim YJ, Choi IY, Mukherjee-Clavin B, Djaballah H, Studer L (2012) Large-scale screening using familial dysautonomia induced pluripotent stem cells identifies compounds that rescue IKBKAP expression. Nat Biotechnol 30(12):1244–1248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lees JG, Gardner DK, Harvey AJ (2018) Mitochondrial and glycolytic remodeling during nascent neural differentiation of human pluripotent stem cells. Development 145(20)

    PubMed  Google Scholar 

  • Leonard JV, Schapira AH (2000) Mitochondrial respiratory chain disorders I: mitochondrial DNA defects. Lancet 355(9200):299–304

    CAS  PubMed  Google Scholar 

  • Li FY, Cuddon PA, Song J, Wood SL, Patterson JS, Shelton GD, Duncan ID (2006) Canine spongiform leukoencephalomyelopathy is associated with a missense mutation in cytochrome b. Neurobiol Dis 21(1):35–42

    CAS  PubMed  Google Scholar 

  • Li K, Li Y, Shelton JM, Richardson JA, Spencer E, Chen ZJ, Wang X, Williams RS (2000) Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell 101(4):389–399

    CAS  PubMed  Google Scholar 

  • Li L, Chao J, Shi Y (2018) Modeling neurological diseases using iPSC-derived neural cells : iPSC modeling of neurological diseases. Cell Tissue Res 371(1):143–151

    CAS  PubMed  Google Scholar 

  • Li S, Guo J, Ying Z, Chen S, Yang L, Chen K, Long Q, Qin D, Pei D, Liu X (2015) Valproic acid-induced hepatotoxicity in Alpers syndrome is associated with mitochondrial permeability transition pore opening-dependent apoptotic sensitivity in an induced pluripotent stem cell model. Hepatology 61(5):1730–1739

    CAS  PubMed  Google Scholar 

  • Lindvall O, Kokaia Z, Martinez-Serrano A (2004) Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat Med 10(Suppl):S42–S50

    PubMed  Google Scholar 

  • Lorenz C, Lesimple P, Bukowiecki R, Zink A, Inak G, Mlody B, Singh M, Semtner M, Mah N, Aure K, Leong M, Zabiegalov O, Lyras EM, Pfiffer V, Fauler B, Eichhorst J, Wiesner B, Huebner N, Priller J, Mielke T, Meierhofer D, Izsvak Z, Meier JC, Bouillaud F, Adjaye J, Schuelke M, Wanker EE, Lombes A, Prigione A (2017) Human iPSC-derived neural progenitors are an effective drug discovery model for neurological mtDNA disorders. Cell Stem Cell 20(5):659–674 e659

    CAS  PubMed  Google Scholar 

  • Luo Y, Xu X, An X, Sun X, Wang S, Zhu D (2016) Targeted inhibition of the miR-199a/214 cluster by CRISPR interference augments the tumor tropism of human induced pluripotent stem cell-derived neural stem cells under hypoxic condition. Stem Cells Int 2016:3598542

    PubMed  PubMed Central  Google Scholar 

  • Ma H, Folmes CD, Wu J, Morey R, Mora-Castilla S, Ocampo A, Ma L, Poulton J, Wang X, Ahmed R, Kang E, Lee Y, Hayama T, Li Y, Van Dyken C, Gutierrez NM, Tippner-Hedges R, Koski A, Mitalipov N, Amato P, Wolf DP, Huang T, Terzic A, Laurent LC, Izpisua Belmonte JC, Mitalipov S (2015) Metabolic rescue in pluripotent cells from patients with mtDNA disease. Nature 524(7564):234–238

    CAS  PubMed  Google Scholar 

  • Mannella CA, Lederer WJ, Jafri MS (2013) The connection between inner membrane topology and mitochondrial function. J Mol Cell Cardiol 62:51–57

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mathews CE, McGraw RA, Berdanier CD (1995) A point mutation in the mitochondrial DNA of diabetes-prone BHE/cdb rats. FASEB J 9(15):1638–1642

    CAS  PubMed  Google Scholar 

  • Mayer M, Arrizabalaga O, Schrader I, Ritter S, Thielemann C Human embryonic stem cell derived neurospheres ? 2D and 3D cell culture in one sample. Cellular Neuroscience Archive

  • Mazzini L, Gelati M, Profico DC, Sgaravizzi G, Projetti Pensi M, Muzi G, Ricciolini C, Rota Nodari L, Carletti S, Giorgi C, Spera C, Domenico F, Bersano E, Petruzzelli F, Cisari C, Maglione A, Sarnelli MF, Stecco A, Querin G, Masiero S, Cantello R, Ferrari D, Zalfa C, Binda E, Visioli A, Trombetta D, Novelli A, Torres B, Bernardini L, Carriero A, Prandi P, Servo S, Cerino A, Cima V, Gaiani A, Nasuelli N, Massara M, Glass J, Soraru G, Boulis NM, Vescovi AL (2015) Human neural stem cell transplantation in ALS: initial results from a phase I trial. J Transl Med 13:17

    PubMed  PubMed Central  Google Scholar 

  • Meirelles FV, Smith LC (1997) Mitochondrial genotype segregation in a mouse heteroplasmic lineage produced by embryonic karyoplast transplantation. Genetics 145(2):445–451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Melberg A, Moslemi AR, Palm O, Raininko R, Stalberg E, Oldfors A (2009) A patient with two mitochondrial DNA mutations causing PEO and LHON. Eur J Med Genet 52(1):47–48

    PubMed  Google Scholar 

  • Mertens J, Marchetto MC, Bardy C, Gage FH (2016) Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience. Nat Rev Neurosci 17(7):424–437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meseguer S, Panadero J, Navarro-Gonzalez C, Villarroya M, Boutoual R, Comi GP, Armengod ME (2018) The MELAS mutation m.3243A>G promotes reactivation of fetal cardiac genes and an epithelial-mesenchymal transition-like program via dysregulation of miRNAs. Biochim Biophys Acta Mol Basis Dis 1864(9 Pt B):3022–3037

    CAS  PubMed  Google Scholar 

  • Miller JD, Ganat YM, Kishinevsky S, Bowman RL, Liu B, Tu EY, Mandal PK, Vera E, Shim JW, Kriks S, Taldone T, Fusaki N, Tomishima MJ, Krainc D, Milner TA, Rossi DJ, Studer L (2013) Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13(6):691–705

    CAS  PubMed  PubMed Central  Google Scholar 

  • Milone M, Brunetti-Pierri N, Tang LY, Kumar N, Mezei MM, Josephs K, Powell S, Simpson E, Wong LJ (2008) Sensory ataxic neuropathy with ophthalmoparesis caused by POLG mutations. Neuromuscul Disord 18(8):626–632

    PubMed  Google Scholar 

  • Moslemi AR, Darin N, Tulinius M, Oldfors A, Holme E (2005) Two new mutations in the MTATP6 gene associated with Leigh syndrome. Neuropediatrics 36(5):314–318

    CAS  PubMed  Google Scholar 

  • Natalwala A, Kunath T (2017) Preparation, characterization, and banking of clinical-grade cells for neural transplantation: scale up, fingerprinting, and genomic stability of stem cell lines. Prog Brain Res 230:133–150

    PubMed  Google Scholar 

  • Nesbitt V, Pitceathly RDS, Turnbull DM, Taylor RW, Sweeney MG, Mudanohwo EE, Rahman S, Hanna MG, McFarland R (2013) The UK MRC mitochondrial disease patient cohort study: clinical phenotypes associated with the m.3243A>G mutation—implications for diagnosis and management. Journal of Neurology, Neurosurgery & Psychiatry 84(8):936–938

    Google Scholar 

  • Nierode GJ, Perea BC, McFarland SK, Pascoal JF, Clark DS, Schaffer DV, Dordick JS (2016) High-throughput toxicity and phenotypic screening of 3D human neural progenitor cell cultures on a microarray chip platform. Stem Cell Reports 7(5):970–982

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nizzardo M, Simone C, Rizzo F, Ruggieri M, Salani S, Riboldi G, Faravelli I, Zanetta C, Bresolin N, Comi GP, Corti S (2014) Minimally invasive transplantation of iPSC-derived ALDHhiSSCloVLA4+ neural stem cells effectively improves the phenotype of an amyotrophic lateral sclerosis model. Hum Mol Genet 23(2):342–354

    CAS  PubMed  Google Scholar 

  • Nutt SE, Chang EA, Suhr ST, Schlosser LO, Mondello SE, Moritz CT, Cibelli JB, Horner PJ (2013) Caudalized human iPSC-derived neural progenitor cells produce neurons and glia but fail to restore function in an early chronic spinal cord injury model. Exp Neurol 248:491–503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer CS, Osellame LD, Stojanovski D, Ryan MT (2011) The regulation of mitochondrial morphology: intricate mechanisms and dynamic machinery. Cell Signal 23(10):1534–1545

    CAS  PubMed  Google Scholar 

  • Peng J, Liu Q, Rao MS, Zeng X (2013) Using human pluripotent stem cell-derived dopaminergic neurons to evaluate candidate Parkinson's disease therapeutic agents in MPP+ and rotenone models. J Biomol Screen 18(5):522–533

    CAS  PubMed  Google Scholar 

  • Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair--current views. Stem Cells 25(11):2896–2902

    PubMed  Google Scholar 

  • Picard M, Taivassalo T, Gouspillou G, Hepple RT (2011) Mitochondria: isolation, structure and function. J Physiol 589(Pt 18):4413–4421

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prajumwongs P, Weeranantanapan O, Jaroonwitchawan T, Noisa P (2016) Human embryonic stem cells: a model for the study of neural development and neurological diseases. Stem Cells Int 2016:2958210

    PubMed  PubMed Central  Google Scholar 

  • Prigione, A. (2015). Induced pluripotent stem cells (iPSCs) for modeling mitochondrial DNA disorders

  • Prigione A, Fauler B, Lurz R, Lehrach H, Adjaye J (2010) The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells 28(4):721–733

    CAS  PubMed  Google Scholar 

  • Prigione A, Lichtner B, Kuhl H, Struys EA, Wamelink M, Lehrach H, Ralser M, Timmermann B, Adjaye J (2011) Human induced pluripotent stem cells harbor homoplasmic and heteroplasmic mitochondrial DNA mutations while maintaining human embryonic stem cell-like metabolic reprogramming. Stem Cells 29(9):1338–1348

    CAS  PubMed  Google Scholar 

  • Readhead B, Hartley BJ, Eastwood BJ, Collier DA, Evans D, Farias R, He C, Hoffman G, Sklar P, Dudley JT, Schadt EE, Savic R, Brennand KJ (2018) Expression-based drug screening of neural progenitor cells from individuals with schizophrenia. Nat Commun 9(1):4412

    PubMed  PubMed Central  Google Scholar 

  • Reddy PH (2009) Role of mitochondria in neurodegenerative diseases: mitochondria as a therapeutic target in Alzheimer's disease. CNS Spectr 14(8 Suppl 7):8–13 Type="Bold">discussion 16-18

    PubMed  PubMed Central  Google Scholar 

  • Remtulla S, Emilie Nguyen CT, Prasad C, Campbell C (2019) Twinkle-associated mitochondrial DNA depletion. Pediatr Neurol 90:61–65

    PubMed  Google Scholar 

  • Riley J, Glass J, Feldman EL, Polak M, Bordeau J, Federici T, Johe K, Boulis NM (2014) Intraspinal stem cell transplantation in amyotrophic lateral sclerosis: a phase I trial, cervical microinjection, and final surgical safety outcomes. Neurosurgery 74(1):77–87

    PubMed  Google Scholar 

  • Rossmanith W, Raffelsberger T, Roka J, Kornek B, Feucht M, Bittner RE (2003) The expanding mutational spectrum of MERRF substitution G8361A in the mitochondrial tRNALys gene. Ann Neurol 54(6):820–823

    CAS  PubMed  Google Scholar 

  • Rusecka J, Kaliszewska M, Bartnik E, Tonska K (2018) Nuclear genes involved in mitochondrial diseases caused by instability of mitochondrial DNA. J Appl Genet 59(1):43–57

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schaller A, Hahn D, Jackson CB, Kern I, Chardot C, Belli DC, Gallati S, Nuoffer JM (2011) Molecular and biochemical characterisation of a novel mutation in POLG associated with Alpers syndrome. BMC Neurol 11:4

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schon EA, Manfredi G (2003) Neuronal degeneration and mitochondrial dysfunction. J Clin Invest 111(3):303–312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simao D, Silva MM, Terrasso AP, Arez F, Sousa MFQ, Mehrjardi NZ, Saric T, Gomes-Alves P, Raimundo N, Alves PM, Brito C (2018) Recapitulation of human neural microenvironment signatures in iPSC-derived NPC 3D differentiation. Stem Cell Reports 11(2):552–564

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh B, Li X, Owens KM, Vanniarajan A, Liang P, Singh KK (2015) Human REV3 DNA polymerase zeta localizes to mitochondria and protects the mitochondrial genome. PLoS One 10(10):e0140409

    PubMed  PubMed Central  Google Scholar 

  • Stewart JB, Chinnery PF (2015) The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat Rev Genet 16(9):530–542

    CAS  PubMed  Google Scholar 

  • Stumpf JD, Copeland WC (2011) Mitochondrial DNA replication and disease: insights from DNA polymerase gamma mutations. Cell Mol Life Sci 68(2):219–233

    CAS  PubMed  Google Scholar 

  • Sugai K, Ueda H, Morimoto K, Tanaka M, Takahashi D, Nakashima A, Kato J, Takahashi H, Yamaguchi Y, Kawamura T, Hanaoka K, Miyazaki Y, Yokoo T (2018) Maternally inherited diabetes and deafness complicated by mesangial galactose-deficient IgA1 deposits: a case report. BMC Nephrol 19(1):350

    PubMed  PubMed Central  Google Scholar 

  • Sykora P, Kanno S, Akbari M, Kulikowicz T, Baptiste BA, Leandro GS, Lu H, Tian J, May A, Becker KA, Croteau DL, Wilson DM 3rd, Sobol RW, Yasui A, Bohr VA (2017) DNA polymerase beta participates in mitochondrial DNA repair. Mol Cell Biol 37(16)

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    CAS  PubMed  Google Scholar 

  • Tang Y, Yu P, Cheng L (2017) Current progress in the derivation and therapeutic application of neural stem cells. Cell Death Dis 8(10):e3108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor RW, Turnbull DM (2005) Mitochondrial DNA mutations in human disease. Nat Rev Genet 6(5):389–402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teslaa T, Teitell MA (2015) Pluripotent stem cell energy metabolism: an update. EMBO J 34(2):138–153

    CAS  PubMed  Google Scholar 

  • Thornton B, Cohen B, Copeland W, Maria BL (2014) Mitochondrial disease: clinical aspects, molecular mechanisms, translational science, and clinical frontiers. J Child Neurol 29(9):1179–1207

    PubMed  PubMed Central  Google Scholar 

  • Torregrosa-Munumer R, Forslund JME, Goffart S, Pfeiffer A, Stojkovic G, Carvalho G, Al-Furoukh N, Blanco L, Wanrooij S, Pohjoismaki JLO (2017) PrimPol is required for replication reinitiation after mtDNA damage. Proc Natl Acad Sci U S A 114(43):11398–11403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tzoulis C, Tran GT, Coxhead J, Bertelsen B, Lilleng PK, Balafkan N, Payne B, Miletic H, Chinnery PF, Bindoff LA (2014) Molecular pathogenesis of polymerase gamma-related neurodegeneration. Ann Neurol 76(1):66–81

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Goethem G, Dermaut B, Lofgren A, Martin JJ, Van Broeckhoven C (2001) Mutation of POLG is associated with progressive external ophthalmoplegia characterized by mtDNA deletions. Nat Genet 28(3):211–212

    PubMed  Google Scholar 

  • Varum S, Rodrigues AS, Moura MB, Momcilovic O, Easley CAT, Ramalho-Santos J, Van Houten B, Schatten G (2011) Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS One 6(6):e20914

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vissing J, Ravn K, Danielsen ER, Duno M, Wibrand F, Wevers RA, Schwartz M (2002) Multiple mtDNA deletions with features of MNGIE. Neurology 59(6):926–929

    CAS  PubMed  Google Scholar 

  • Weerasinghe CAL, Bui BT, Vu TT, Nguyen HT, Phung BK, Nguyen VM, Pham VA, Cao VH, Phan TN (2018) Leigh syndrome T8993C mitochondrial DNA mutation: heteroplasmy and the first clinical presentation in a Vietnamese family. Mol Med Rep 17(5):6919–6925

    CAS  PubMed  Google Scholar 

  • Wilkins HM, Carl SM, Swerdlow RH (2014) Cytoplasmic hybrid (cybrid) cell lines as a practical model for mitochondriopathies. Redox Biol 2:619–631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wisnovsky S, Sack T, Pagliarini DJ, Laposa RR, Kelley SO (2018) DNA polymerase theta increases mutational rates in mitochondrial DNA. ACS Chem Biol 13(4):900–908

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong LJ (2007) Pathogenic mitochondrial DNA mutations in protein-coding genes. Muscle Nerve 36(3):279–293

    CAS  PubMed  Google Scholar 

  • Wu YT, Hsu YH, Huang CY, Ho MC, Cheng YC, Wen CH, Ko HW, Lu HE, Chen YC, Tsai CL, Hsu YC, Wei YH, Hsieh PCH (2018) Generation of an induced pluripotent stem cell (iPSC) line from a 40-year-old patient with the A8344G mutation of mitochondrial DNA and MERRF (myoclonic epilepsy with ragged red fibers) syndrome. Stem Cell Res 27:10–14

    CAS  PubMed  Google Scholar 

  • Yamanaka S, Blau HM (2010) Nuclear reprogramming to a pluripotent state by three approaches. Nature 465(7299):704–712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Wu H, Kang X, Liang Y, Lan T, Li T, Tan T, Peng J, Zhang Q, An G, Liu Y, Yu Q, Ma Z, Lian Y, Soh BS, Chen Q, Liu P, Chen Y, Sun X, Li R, Zhen X, Liu P, Yu Y, Li X, Fan Y (2018) Targeted elimination of mutant mitochondrial DNA in MELAS-iPSCs by mitoTALENs. Protein Cell 9(3):283–297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yarham JW, Blakely EL, Alston CL, Roberts ME, Ealing J, Pal P, Turnbull DM, McFarland R, Taylor RW (2013) The m.3291T>C mt-tRNA(Leu(UUR)) mutation is definitely pathogenic and causes multisystem mitochondrial disease. J Neurol Sci 325(1–2):165–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu DX, Di Giorgio FP, Yao J, Marchetto MC, Brennand K, Wright R, Mei A, McHenry L, Lisuk D, Grasmick JM, Silberman P, Silberman G, Jappelli R, Gage FH (2014) Modeling hippocampal neurogenesis using human pluripotent stem cells. Stem Cell Reports 2(3):295–310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu N, Zhang YF, Zhang K, Xie Y, Lin XJ, Di Q (2016) MELAS and Kearns-Sayre overlap syndrome due to the mtDNA m. A3243G mutation and large-scale mtDNA deletions. eNeurologicalSci 4:15–18

    PubMed  PubMed Central  Google Scholar 

  • Zambelli F, Spits C (2017) A step forward in disease modelling for mitochondrial diseases. Stem Cell Investig 4:89

    PubMed  PubMed Central  Google Scholar 

  • Zeviani M, Carelli V (2007) Mitochondrial disorders. Curr Opin Neurol 20(5):564–571

    CAS  PubMed  Google Scholar 

  • Zhang M, Wang L, An K, Cai J, Li G, Yang C, Liu H, Du F, Han X, Zhang Z, Zhao Z, Pei D, Long Y, Xie X, Zhou Q, Sun Y (2018) Lower genomic stability of induced pluripotent stem cells reflects increased non-homologous end joining. Cancer Commun (Lond) 38(1):49

    Google Scholar 

  • Zhang W, Gu GJ, Shen X, Zhang Q, Wang GM, Wang PJ (2015) Neural stem cell transplantation enhances mitochondrial biogenesis in a transgenic mouse model of Alzheimer's disease-like pathology. Neurobiol Aging 36(3):1282–1292

    CAS  PubMed  Google Scholar 

  • Zhang Z, Zhang Y, Gao F, Han S, Cheah KS, Tse HF, Lian Q (2017) CRISPR/Cas9 genome-editing system in human stem cells: current status and future prospects. Mol Ther Nucleic Acids 9:230–241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao WN, Cheng C, Theriault KM, Sheridan SD, Tsai LH, Haggarty SJ (2012) A high-throughput screen for Wnt/beta-catenin signaling pathway modulators in human iPSC-derived neural progenitors. J Biomol Screen 17(9):1252–1263

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by funding from the Norwegian Research Council (project no. 229652), Rakel og Otto Kr.Bruuns legat and Meltzer (project no.809432).

Author information

Authors and Affiliations

Authors

Contributions

X.L, and L.A.B: Conceptualization;

X.L, C.K.K, and G.H.V: Writing Original Draft;

X.L, C.K.K, G.H.V, Y.H, and L.A.B: Writing Review & Editing;

L.A.B: Funding Acquisition;

X.L: Supervision.

Corresponding author

Correspondence to Xiao Liang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Kristiansen, C.K., Vatne, G.H. et al. Patient-specific neural progenitor cells derived from induced pluripotent stem cells offer a promise of good models for mitochondrial disease. Cell Tissue Res 380, 15–30 (2020). https://doi.org/10.1007/s00441-019-03164-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-019-03164-x

Keywords

Navigation