Skip to main content
Log in

Foraging behaviour at multiple temporal scales in a wild alpine equid

  • Plant-Animal interactions - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Forage abundance, forage quality, and social factors are key elements of the foraging ecology of wild herbivores. For non-ruminant equids, forage-limited environments are likely to impose severe constraints on their foraging behaviour. We used a multi-scale approach to study foraging behaviour in kiang (Equus kiang), a wild equid inhabiting the high-altitude rangelands of the Tibetan Plateau. Using behavioural observations and vegetation sampling, we first assessed how patterns of plant abundance and quality affected (i) the instantaneous forage intake rate (fine scale) and (ii) the proportion of time spent foraging (coarse scale) across seasons. We also tested whether foraging behaviour differed among group types, between sex in adults, and between females of different reproductive status. At a fine scale, intake rate increased linearly with bite size and increased following a type II curvilinear function with biomass on feeding sites. Forage intake rate also increased linearly with plant quality. Male and female kiangs had similar intake rates. Likewise, gravid and lactating females had similar intake rates as barren and non-lactating females. At a coarse scale, kiangs spent longer time feeding in mesic than in xeric habitats, and spent more time feeding in early summer and fall than in late summer. Groups of adults with foals spent less time feeding than male groups and groups of adults without foals. Our findings suggest that kiangs use flexible foraging behaviours in relation to seasonal variations of vegetation quality and abundance, a likely outcome of the extreme seasonal conditions encountered on the Tibetan Plateau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albon SD, Langvatn R (1992) Plant phenology and the benefits of migration in a temperate ungulate. Oikos 65:502–513

    Article  Google Scholar 

  • Altmann J (1974) Observational study of behavior: sampling methods. Behaviour 49:227–267

    Article  PubMed  CAS  Google Scholar 

  • Bailey DW, Gross JE, Laca EA, Rittenhouse LR, Coughenour MB, Swift DM, Sims PL (1996) Mechanisms that result in large herbivore grazing distribution patterns. J Range Manag 49:386–400

    Article  Google Scholar 

  • Berger J (1986) Wild horses of the Great Basin: social competition and population size. University of Chicago Press, Chicago

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer-Verlag, New York

    Google Scholar 

  • Côté SD, Schaefer JA, Messier F (1997) Time budget and synchrony of activities in muskoxen: the influence of sex, age, and season. Can J Zool 75:1628–1635

    Article  Google Scholar 

  • DelGiudice GD, Mech LD, Seal US (1990) Effects of winter undernutrition on body composition and physiological profiles of white-tailed deer. J Wildl Manage 54:539–550

    Article  Google Scholar 

  • Demment MW, Van Soest PJ (1985) A nutritional explanation for body-size patterns of ruminants and nonruminant herbivores. Am Nat 125:641–672

    Article  Google Scholar 

  • Denzau G, Denzau H (1999) Wildesel. Thorbecke, Stuttgart

    Google Scholar 

  • Duncan P (1992) Horses and grasses: the nutritional ecology of equids and their impact on the Camargue. Springer, New York

    Google Scholar 

  • Duncan P, Foose TJ, Gordon IJ, Gakahu CG, Lloyd M (1990) Comparative nutrient extraction from forages by grazing bovids and equids: a test of the nutritional model of equid/bovid competition and coexistence. Oecologia 84:411–418

    Google Scholar 

  • Edouard N, Fleurance G, Martin-Rosset W, Duncan P, Dulphy JP, Grange S, Baumont R, Dubroeucq H, Pérez-Barbería FJ, Gordon IJ (2008) Voluntary intake and digestibility in horses: effect of forage quality with emphasis on individual variability. Animal 2:1526–1533. doi:10.1017/S1751731108002760

    Article  PubMed  CAS  Google Scholar 

  • Fleurance G, Fritz H, Duncan P, Gordon IJ, Edouard N, Vial C (2009) Instantaneous intake rate in horses of different body sizes: influences of sward biomass and fibrousness. Appl Anim Behav Sci 117:84–92. doi:10.1016/j.applanim.2008.11.006

    Article  Google Scholar 

  • Fortin D, Fryxell JM, Pilote R (2002) The temporal scale of foraging decisions in Bison. Ecology 83:970–982

    Article  Google Scholar 

  • Fox JL, Nurbu C, Chundawat RS (1991) The Mountain ungulates of Ladakh, India. Biol Conserv 58:167–190

    Article  Google Scholar 

  • Fryxell JM (1991) Forage quality and aggregation by large herbivores. Am Nat 138:478–498

    Article  Google Scholar 

  • Giraldeau L-A, Caraco T (2000) Social foraging theory. Princeton University Press, Princeton

    Google Scholar 

  • Gross J, Shipley LA, Hobbs NT, Spalinger DE, Wunder BA (1993) Functional response of herbivores in food-concentrated patches: tests of a mechanistic model. Ecology 74:778–791

    Article  Google Scholar 

  • Hamel S, Côté SD (2007) Habitat use patterns in relation to escape terrain: are alpine ungulate females trading off better foraging sites for safety? Can J Zool 85:933–943

    Article  Google Scholar 

  • Hamel S, Côté SD (2008) Trade-offs in activity budget in an alpine ungulate: contrasting lactating and nonlactating females. Anim Behav 75:217–227. doi:10.1016/j.anbehav.2007.04.028

    Article  Google Scholar 

  • Hobbs NT, Gross JE, Shipley LA, Spalinger DE, Wunder BA (2003) Herbivore functional response in heterogeneous environments: a contest among models. Ecology 84:666–681

    Article  Google Scholar 

  • Illius AW (2006) Linking functional responses and foraging behaviour to population dynamics. In: Danell K, Bergström R, Duncan P, Pastor J (eds) Large herbivore ecology, ecosystem dynamics and conservation. Cambridge University Press, New York, pp 71–96

    Chapter  Google Scholar 

  • Janis C (1976) The evolutionary strategy of the equidae and the origins of rumen and caecal digestion. Evolution 30:757–774

    Article  Google Scholar 

  • Janis C, Ehrhardt D (1988) Correlation of relative muzzle width and relative incisor width with dietary preference in ungulates. Zool J Linn Soc 92:267–284

    Article  Google Scholar 

  • Jarman PJ (1974) The social organization of antelope in relation to their ecology. Behaviour 48:216–267

    Article  Google Scholar 

  • Kaczensky P, Ganbaatar O, von Wehrden H, Walzer C (2008) Resource selection by sympatric wild equids in the Mongolian Gobi. J Appl Ecol 45:1762–1769. doi:10.1111/j.1365-2664.2008.01565.x

    Article  Google Scholar 

  • Klingel H (1977) Observations on social organization and behaviour of African and Asiatic Wild Asses (Equus africanus and Equus hemionus). Zietschrift fur Tierpsychology 44:323–331

    Article  CAS  Google Scholar 

  • Laca EA, Ungar ED, Seligman N, Demment MW (1992) Effects of sward height and bulk density on bite dimensions of cattle grazing homogeneous swards. Grass Forage Sci 47:91–102

    Article  Google Scholar 

  • Laca EA, Distel RA, Griggs TC, Demment MW (1994) Effects of canopy structure on patch depression by grazers. Ecology 75:706–716

    Article  Google Scholar 

  • Laca EA, Shipley LA, Reid ED (2001) Structural anti-quality characteristics of range and pasture plants. J Range Manage 54:413–419

    Article  Google Scholar 

  • Mani MS (1978) Ecology and phytogeography of high altitude plants of the northwest Himalaya. Chapman and Hall, London

    Google Scholar 

  • McNaughton SJ (1985) Ecology of a grazing ecosystem: the Serengeti. Ecol Monogr 55:259–294

    Article  Google Scholar 

  • Moen J, Andersen R, Illius A (2006) Living in a seasonal ecosystem. In: Danell K, Bergström R, Duncan P, Pastor J (eds) Large herbivore ecology, ecosystem dynamics and conservation. Cambridge University Press, New York, pp 50–70

    Chapter  Google Scholar 

  • Neuhaus P, Ruckstuhl KE (2002) The link between sexual dimorphism, activity budgets, and group cohesion: the case of the plain zebra (Equus Burchelli). Can J Zool 80:1437–1441. doi:10.1139/Z02-126

    Article  Google Scholar 

  • Okello MM, Wishitemi REL, Muhoro F (2002) Forage intake rates and foraging efficiency of free-ranging zebra and impala. S Afr J Wildl Res 32:93–100

    Google Scholar 

  • Owen-Smith N (2002) Adaptive herbivore ecology. Cambridge University Press, New York

    Book  Google Scholar 

  • Pérez-Barbería FJ, Nores C (1996) Grazing activity of breeding and non-breeding female Cantabrian chamois (Rupicapra pyrenaica parva). Ethol Ecol Evol 8:353–363

    Article  Google Scholar 

  • Pérez-Barbería FJ, Pérez-Fernández E, Robertson E, Alvarez-Enríquez B (2008) Does the Jarman-Bell principle at intra-specific level explain sexual segregation in polygynous ungulates? Sex differences in forage digestibility in Soay sheep. Oecologia 157:21–30. doi:10.1007/s00442-008-1056-4

    Article  PubMed  Google Scholar 

  • Pfister O (2004) Birds and mammals of Ladakh. Oxford University Press, New Delhi

    Google Scholar 

  • Rawat GS, Adhikari BS (2005) Floristics and distribution of plant communities across moisture and topographic gradients in Tso Kar basin, Changthang Plateau, Eastern Ladakh. Arctic Antarctic Alpine Res 17:539–544

    Article  Google Scholar 

  • Rubenstein DI (1986) Ecology and sociality in horses and zebras. In: Rubenstein DI, Wrangham RW (eds) Ecological aspects of social evolution. Princeton University Press, Princeton, pp 282–302

    Google Scholar 

  • Rubenstein DI (1989) Life history and social organization in arid adapted ungulates. J Arid Environ 17:145–156

    Google Scholar 

  • Rubenstein DI (1994) The ecology of female social behaviour in horses, zebras, and asses. In: Jarman P, Rossiter A (eds) Animal societies: individuals, interactions and organisations. Kyoto University Press, Kyoto, pp 13–28

    Google Scholar 

  • Ruckstuhl KE (1998) Foraging behaviour and sexual segregation in bighorn sheep. Anim Behav 56:99–106

    Article  PubMed  Google Scholar 

  • SAS Institute Inc (2003) SAS/stat user’s guide. SAS Institute Inc, Cary

  • Schaefer JA, Messier F (1995) Habitat selection as a hierarchy: the spatial scales of winter foraging by muskoxen. Ecography 18:333–344

    Article  Google Scholar 

  • Schaller GB (1998) Wildlife of the Tibetan Steppe. The University of Chicago Press, Chicago

    Google Scholar 

  • Shipley LA (2007) The influence of bite size on foraging at larger spatial and temporal scales by mammalian herbivores. Oikos 116:1964–1974. doi:10.1111/j.2007.0030-1299.15974.x

    Article  Google Scholar 

  • Shrader AM, Owen-Smith N, Ogutu JO (2006) How a mega-grazer copes with the dry season: food and nutrient intake rates by white rhinoceros in the wild. Funct Ecol 20:376–384

    Article  Google Scholar 

  • Spalinger DE, Hobbs NT (1992) Mechanisms of foraging in mammalian herbivores: new models of functional response. Am Nat 140:325–348

    Article  PubMed  CAS  Google Scholar 

  • SPSS Inc (2002) SigmaPlot 8.0 user’s guide. SPSS Inc, Chicago

  • Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press, Princeton

    Google Scholar 

  • St-Louis A (2010) Écologie du kiang au Ladakh: sélection des ressources, approvisionnement et comportement social d’un équidé méconnu du plateau tibétain. PhD dissertation, Department of Biology, Laval University, Québec, Québec, Canada

  • St-Louis A, Côté SD (2009) Equus kiang (Perissodactyla: Equidae). Mammalian Species 835:1–11. doi:10.1644/835.1

    Google Scholar 

  • Sundaresan SR, Fischhoff IR, Duschhoff J, Rubenstein DI (2007) Network metrics reveal differences in social organization between two fission-fusion species, Grevy’s zebra and onager. Oecologia 151:140–149. doi:10.1007/s00442-006-0553-6

    Article  PubMed  Google Scholar 

  • Therrien J-F, Côté SD, Festa-Bianchet M (2007) Conservative maternal care in an iteroparous mammal: a resource allocation experiment. Behav Ecol Sociobiol 62:193–199

    Article  Google Scholar 

  • Twine W (2002) Feeding time budgets of selected African ruminant and non-ruminant grazers. Afr J Ecol 40:410–412

    Article  Google Scholar 

  • Van der Wal R, Madan N, Van Lieshout S, Dormann C, Langvatn R, Albon SD (2000) Trading forage quality for quantity? Plant phenology and patch choice by Svalbard reindeer. Oecologia 123:108–115

    Article  Google Scholar 

  • Van Soest PJ (1994) Nutritional ecology of the ruminant, vol 2nd. Cornell University Press, Ithaca

    Google Scholar 

  • Van Soest PJ (1996) Allometry and ecology of feeding behavior and digestive capacity in herbivores: a review. Zoo Biol 15:455–479

    Article  Google Scholar 

  • Wilmshurst JF, Fryxell JM, Farm BP, Sinclair ARE, Henschel CP (1999) Spatial distribution of Serengeti wildebeest in relation to resources. Can J Zool 77:1223–1232

    Article  Google Scholar 

  • Wilmshurst JF, Fryxell JM, Bergman CM (2000) The allometry of patch selection in ruminants. Proc Royal Soc London B 267:345–349

    Article  CAS  Google Scholar 

  • Xu RH (2003) Measuring explained variation in linear mixed effects models. Stat Med 22:3527–3541. doi:10.1002/sim.1572

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Our research was funded by the Wildlife Conservation Society, the Natural Sciences and Engineering Research Council of Canada and the Bureau International de l’Université Laval, Canada. We thank K. Gailson, S. Tsering, C. Namgyal, J. Namgyal and the Rupshu nomadic community for their invaluable help in the field. We also thank J.L. Fox (University of Tromsø), S. Sathyakumar (Wildlife Institute of India), S. Ul-Haaq, J. Thakpa (Department of Wildlife Protection of Jammu and Kashmir) and the Norwegian Agency for Development Cooperation (WII-UiTø ICP programme) for their logistical support. We are indebted to D.I. Rubenstein, D. Fortin, C. Dussault, J. Pastor and an anonymous reviewer for insightful comments on a previous version of the manuscript. Finally, we thank J. Mainguy, S. Hamel and A. Massé for their help with statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine St-Louis.

Additional information

Communicated by Gøran Ericsson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 57.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

St-Louis, A., Côté, S.D. Foraging behaviour at multiple temporal scales in a wild alpine equid. Oecologia 169, 167–176 (2012). https://doi.org/10.1007/s00442-011-2166-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-011-2166-y

Keywords

Navigation