Skip to main content
Log in

Manipulation of parental effort affects plumage bacterial load in a wild passerine

  • Plant-microbe-animal interactions - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

It has been suggested that plumage microorganisms play an important role in shaping the life histories of wild birds. Some bacteria may act as pathogens or cause damage to feathers, and thereby reduce individual fitness. Intense parental care in birds can result in a reduction of self-maintenance and preening behavior in parents and therefore might affect the dynamics of microbiota living on their feathers. However, experimental evidence of this relationship is virtually absent. We manipulated the parental effort of wild breeding pied flycatcher (Ficedula hypoleuca) females by modifying their brood size or temporarily removing male partners. We expected that experimentally decreasing or increasing parental effort would affect feather sanitation in females and therefore also bacterial density on their plumage. In accordance with this hypothesis, manipulation affected the density of free-living bacteria: females with reduced broods had the lowest number of free-living bacteria on their feathers, while females left without male partners had the highest. However, manipulation did not have a significant effect on the densities of attached bacteria. Our results provide experimental evidence that a trade-off between self-maintenance and parental effort affects plumage bacterial densities in birds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Archie EA, Theis KR (2011) Animal behaviour meets microbial ecology. Anim Behav 82:425–436. doi:10.1016/j.anbehav.2011.05.029

    Article  Google Scholar 

  • Bisson IA, Marra PP, Burtt EH Jr, Sikaroodi M, Gillevet PM (2007) A molecular comparison of plumage and soil bacteria across biogeographic, ecological, and taxonomic scales. Microb Ecol 54:65–81. doi:10.1007/s00248-006-9173-2

    Article  PubMed  Google Scholar 

  • Blanco G, Tella JL, Potti J, Baz A (2001) Feather mites on birds: costs of parasitism or conditional outcomes? J Avian Biol 32:271–274. doi:10.1111/j.0908-8857.2001.320310.x

    Article  Google Scholar 

  • Board RG, Clay C, Lock J, Dolman J (1994) The egg: a compartmentalized, aseptically packaged food. In: Board RG, Fuller R (eds) Microbiology of the avian egg. Chapman and Hall, London, pp 43–61

    Chapter  Google Scholar 

  • Bruce J, Drysdale EM (1994) Trans-shell transmission. In: Board RG, Fuller R (eds) Microbiology of the avian egg. Chapman and Hall, London, pp 63–91

    Chapter  Google Scholar 

  • Brush AH (1965) Energetics, temperature regulation and circulation in resting, active and defeathered California quail, Lophortyx californicus. Comp Biochem Phys A 15:399–421

    Article  Google Scholar 

  • Burtt EH Jr (2009) A future with feather-degrading bacteria. J Avian Biol 40:349–351. doi:10.1111/j.1600-048X.2009.04831.x

    Article  Google Scholar 

  • Burtt EH Jr, Ichida JM (1999) Occurrence of feather-degrading bacilli in the plumage of birds. Auk 116:364–372

    Article  Google Scholar 

  • Burtt EH Jr, Ichida JM (2004) Gloger’s rule, feather-degrading bacteria, and color variation among song sparrows. Condor 106:681–686. doi:10.1650/7383

    Article  Google Scholar 

  • Clayton DH (1999) Feather-busting bacteria. Auk 116:302–304

    Article  Google Scholar 

  • Clayton DH, Moore J (1997) Host–parasite evolution: General principles and avian models. Oxford University Press, Oxford

    Google Scholar 

  • Cook MI, Beissinger SR, Toranzos GA, Rodriguez RA, Arendt WJ (2003) Trans-shell infection by pathogenic micro-organisms reduces the shelf life of non-incubated bird’s eggs: a constraint on the onset of incubation? Proc R Soc Lond B 270:2233–2240. doi:10.1098/rspb.2003.2508

    Article  Google Scholar 

  • Cook MI, Beissinger SR, Toranzos GA, Arendt WJ (2005) Incubation reduces microbial growth on eggshells and the opportunity for trans-shell infection. Ecol Lett 8:532–537. doi:10.1111/j.1461-0248.2005.00748.x

    Article  PubMed  Google Scholar 

  • Cramp S, Perrins CM (1993) The birds of the western palearctic, vol VII. Oxford University Press, Oxford

  • Czirják GÁ, Pap PL, Vágási CI, Giraudeau M, Mureşan C, Mirleau P, Heeb P (2013) Preen gland removal increases plumage bacterial load but not that of feather-degrading bacteria. Naturwissenschaften 100:145–151. doi:10.1007/s00114-012-1005-2

    Article  PubMed  Google Scholar 

  • Dabert J, Mironov SV (1999) Origin and evolution of feather mites (Astigmata). Exp Appl Acarol 23:437–454. doi:10.1023/A:1006180705101

    Article  Google Scholar 

  • Feare C (1984) The starling. Oxford University Press, Oxford

  • Gill FB (2007) Ornithology, 3rd edn. WH Freeman & Co., New York

  • Giraudeau M, Czirják GÁ, Duval C, Bretagnolle V, Guiterrez C, Guillon N, Heeb P (2013) Effect of preen oil on plumage bacteria: an experimental test with mallard. Behav Process 92:1–5. doi:10.1016/j.beproc.2012.08.001

    Article  CAS  Google Scholar 

  • Goodenough AE, Stallwood B (2010) Intraspecific variation and interspecific differences in the bacterial and fungal assemblages of Blue Tit (Cyanistes caeruleus) and Great Tit (Parus major) nests. Microb Ecol 59:221–232. doi:10.1007/s00248-009-9591-z

    Article  PubMed  Google Scholar 

  • Gow EA, Wiebe KL (2014) Responses by central-place foragers to manipulations of brood size: parent flickers respond to proximate cues but do not increase work rate. Ethology 120:881–892. doi:10.1111/eth.12259

    Article  Google Scholar 

  • Gunderson AR (2008) Feather-degrading bacteria: a new frontier in avian and host–parasite research? Auk 125:972–979. doi:10.1525/auk.2008.91008

    Article  Google Scholar 

  • Gunderson AR, Forsyth MH, Swaddle JP (2009) Evidence that plumage bacteria influence feather coloration and body condition of eastern bluebirds Sialia sialis. J Avian Biol 40:440–447. doi:10.1111/j.1600-048X.2008.04650.x

    Article  Google Scholar 

  • Hart BL (1997) Behavioural defense. In: Clayton DH, Moore J (eds) Host–parasite evolution: general principles and avian models. Oxford University Press, Oxford, pp 59–77

  • Hubàlek Z (2004) An annotated checklist of pathogenic microorganisms associated with migratory birds. J Wildl Dis 40:639–659

    Article  PubMed  Google Scholar 

  • Ichida JM, Krizova L, LeFevre CA, Keener HM, Elwell DL, Burtt EH Jr (2001) Bacterial inoculum enhances keratin degradation and biofilm formation in poultry compost. J Microbiol Meth 47:199–208. doi:10.1016/S0167-7012(01)00302-5

    Article  CAS  Google Scholar 

  • Källander H, Smith H (1990) Manipulation of the brood size of Pied Flycatchers. In: Blondel J, Gosler A, Lebreton JD, McCleery R (eds) Population biology of passerine birds. Springer, Berlin, pp 257–268

  • Kilgas P, Saag P, Mägi M, Tilgar V, Mänd R (2012) Plumage bacterial load increases during nest-building in a passerine bird. J Ornithol 153:833–838. doi:10.1007/s10336-011-0801-3

    Article  Google Scholar 

  • Kirchman DL (2012) Processes in microbial ecology. Oxford University Press, New York

  • Lauber CL, Zhou N, Gordon JI, Knight R, Fierer N (2010) Effect of storage conditions on the assessment of bacterial community structure in soil and human-associated samples. FEMS Microbiol Lett 307:80–86. doi:10.1111/j.1574-6968.2010.01965.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lucas FS, Bertru G, Höfle MG (2003a) Characterization of free-living and attached bacteria in sediments colonized by Hediste diversicolor. Aquat Microb Ecol 32:165–174. doi:10.3354/ame032165

    Article  Google Scholar 

  • Lucas FS, Broennimann O, Febbraro I, Heeb P (2003b) High diversity among feather-degrading bacteria from a dry meadow soil. Microb Ecol 45:282–290. doi:10.1007/s00248-002-2032-x

    Article  CAS  PubMed  Google Scholar 

  • Lucas FS, Moureau B, Jourdie V, Heeb P (2005) Brood size modifications affect plumage bacterial assemblages of European starlings. Mol Ecol 14:639–646. doi:10.1111/j.1365-294x.2005.02436.x

    Article  PubMed  Google Scholar 

  • Lundberg A, Alatalo RV (1992) The Pied Flycatcher. Poyser, London

    Google Scholar 

  • Mänd R, Rasmann E, Mägi M (2013) When a male changes his ways: sex differences in feeding behavior in the pied flycatcher. Behav Ecol 24:853–858. doi:10.1093/beheco/art025

    Article  Google Scholar 

  • Markman S, Yom-Tov Y, Wright J (1996) The effect of male removal on female parental care in the orange-tufted sunbird. Anim Behav 52:437–444. doi:10.1006/anbe.1996.0188

    Article  Google Scholar 

  • Martín-Vivaldi M, Ruiz-Rodríguez M, Soler JJ, Peralta-Sánchez JM, Valdivia E, Martín-Platero AM, Martínez-Bueno M (2009) Seasonal, sexual and developmental differences in hoopoe Upupa epops preen gland morphology and secretions: evidence for a role of bacteria. J Avian Biol 40:191–205. doi:10.1111/j.1600-048X.2009.04393.x

    Article  Google Scholar 

  • Merilä J, Hemborg C (2000) Fitness and feather wear in the Collared flycatcher Ficedula albicollis. J Avian Biol 31:504–510. doi:10.1034/j.1600-048X.2000.310410.x

    Article  Google Scholar 

  • Møller AP, Czirjak GA, Heeb P (2009) Feather micro-organisms and uropygial antimicrobial defences in a colonial passerine bird. Funct Ecol 23:1097–1102. doi:10.1111/j.1365-2435.2009.01594.x

    Article  Google Scholar 

  • Møller AP, Erritzøe J, Rózsa L (2010) Ectoparasites, uropygial glands and hatching success in birds. Oecologia 163:303–311. doi:10.1007/s00442-009-1548-x

    Article  PubMed  Google Scholar 

  • Møller AP, Peralta-Sánchez JM, Nielsen JT, López-Hernández E, Soler JJ (2012) Goshawk prey have more bacteria than non-prey. J Anim Ecol 81:403–410. doi:10.1111/j.1365-2656.2011.01923.x

    Article  PubMed  Google Scholar 

  • Møller AP, Flensted-Jensen E, Mardal W, Soler JJ (2013) Host–parasite relationship between colonial terns and bacteria is modified by a mutualism with a plant with antibacterial defenses. Oecologia 173:169–178. doi:10.1007/s00442-013-2600-4

  • Moreno J, Cowie RJ, Sanz JJ, Williams RSR (1995) Differential response by males and females to brood manipulations in the Pied Flycatcher: energy expenditure and nestling diet. J Anim Ecol 64:721–732. doi:10.2307/5851

    Article  Google Scholar 

  • Moreno J, Veiga JP, Romasanta M, Sànchez S (2002) Effects of maternal quality and mating status on female reproductive success in the polygynous spotless starling. Anim Behav 64:197–206. doi:10.1006/anbe.2002.3060

    Article  Google Scholar 

  • Muza MM, Burtt EH Jr, Ichida JM (2000) Distribution of bacteria on feathers of some eastern North American birds. Wilson Bull 112:432–435. doi:10.1676/0043-5643(2000)112[0432:DOBOFO]2.0.CO;2

  • Newton I (1998) Population limitation in birds. Elsevier, London

  • Ozawa T, Yamaguchi M (1986) Fractionation and estimation of particle-attached and unattached Bradyrhizobium japonicum strains in soils. Appl Environ Microbiol 52:911–914

    PubMed Central  CAS  PubMed  Google Scholar 

  • Peele AM, Burtt EH, Schroeder MR, Greenberg RS (2009) Dark color of the coastal plain swamp sparrow (Melospiza georgiana nigrescens) may be an evolutionary response to occurrence and abundance of salt-tolerant feather-degrading bacilli in its plumage. Auk 126:531–535. doi:10.1525/auk.2009.08142

    Article  Google Scholar 

  • Pinowski J, Barkowska M, Kruszewicz AH, Kruszewicz AG (1994) The causes of the mortality of eggs and nestlings of Passer ssp. J Biosci 19:441–451. doi:10.1007/BF02703180

    Article  Google Scholar 

  • Proctor H, Owens I (2000) Mites and birds: diversity, parasitism and coevolution. Trends Ecol Evol 15:358–364. doi:10.1016/S0169-5347(00)01924-8

    Article  PubMed  Google Scholar 

  • Radford AN, McCleery RH, Woodburn RJW, Morecroft MD (2001) Activity patterns of parent Great Tits Parus major feeding their young during rainfall. Bird Study 48:214–220. doi:10.1080/00063650109461220

    Article  Google Scholar 

  • Rajchard J (2010) Biologically active substances of bird skin: a review. Vet Med 55:413–421

    CAS  Google Scholar 

  • Reneerkens J, Versteegh MA, Schneider AM, Piersma T, Burtt EH Jr (2008) Seasonally changing preen-wax composition: red knots’ (Calidris canutus) flexible defense against feather-degrading bacteria? Auk 125:285–290. doi:10.1525/auk.2008.06217

    Article  Google Scholar 

  • Roff DA (1992) The evolution of life histories; theory and analysis. Chapman & Hall, New York

    Google Scholar 

  • Romano A, Rubolini D, Ambrosini R, Saino N (2014) Early exposure to a bacterial endotoxin may cause breeding failure in a migratory bird. Ethol Ecol Evol 26:80–85. doi:10.1080/03949370.2013.800912

    Article  Google Scholar 

  • Rubtsov GA, Yakimenko VV (2012) The feather mite (Astigmata) fauna of some passerine birds (Passeriformes) in the South of Western Siberia. Entomol Rev 92:1020–1031. doi:10.1134/S0013873812090096

    Article  Google Scholar 

  • Ruiz-de-Castañeda R, Vela AI, Lobato E, Briones V, Moreno J (2011) Bacterial loads on eggshells of the Pied Flycatcher: environmental and maternal factors. Condor 113:200–208. doi:10.1525/cond.2011.100035

  • Ruiz-De-Castañeda R, Burtt EH, González-Braojos S, Moreno J (2012) Bacterial degradability of an intrafeather unmelanized ornament: a role for feather-degrading bacteria in sexual selection? Biol J Linn Soc 105:409–419. doi:10.1111/j.1095-8312.2011.01806.x

    Article  Google Scholar 

  • Saag P, Mänd R, Tilgar V, Kilgas P, Mägi M, Rasmann E (2011a) Plumage bacterial load is related to species, sex, biometrics and fledging success in co-occurring cavity-breeding passerines. Acta Ornithol 46:191–201. doi:10.3161/000164511X62596

    Article  Google Scholar 

  • Saag P, Tilgar V, Mänd R, Kilgas P, Mägi M (2011b) Plumage bacterial assemblages in a breeding wild passerine: relationships with ecological factors and body condition. Microb Ecol 61:740–749. doi:10.1007/s00248-010-9789-0

    Article  PubMed  Google Scholar 

  • Saag P, Kilgas P, Mägi M, Tilgar V, Mänd R (2012) Inter-annual and body topographic consistency in the plumage bacterial load of Great Tits. J Field Ornithol 83:94–100. doi:10.1111/j.1557-9263.2011.00359.x

    Article  Google Scholar 

  • Sangali S, Brandelli A (2000) Isolation and characterization of a novel feather-degrading bacterial strain. Appl Biochem Biotech 87:17–24. doi:10.1385/ABAB:87:1:17

    Article  CAS  Google Scholar 

  • Sanz JJ (1997) Clutch size manipulation in the pied flycatcher: effects on nestling growth, parental care and moult. J Avian Biol 28:157–162. doi:10.2307/3677309

    Article  Google Scholar 

  • Sanz JJ, Moreno J, Arriero E, Merino S (2002) Reproductive effort and blood parasites of breeding pied flycatchers: the need to control for interannual variation and initial health state. Oikos 96:299–306. doi:10.1034/j.1600-0706.2002.960212.x

    Article  Google Scholar 

  • Schaechter M, Ingraham JL, Neidhardt FC (2006) Microbe. ASM, Washington, DC

  • Selje N, Simon M (2003) Composition and dynamics of particle-associated and free-living bacterial communities in the Weser estuary, Germany. Aquat Microb Ecol 30:221–237. doi:10.3354/ame030221

    Article  Google Scholar 

  • Shawkey MD, Pillai SR, Hill GE (2003) Chemical warfare? Effects of uropygial oil on feather-degrading bacteria. J Avian Biol 34:345–349. doi:10.1111/j.0908-8857.2003.03193.x

    Article  Google Scholar 

  • Shawkey MD, Pillai SR, Hill GE, Siefferman LM, Roberts SR (2007) Bacteria as an agent for change in structural plumage color: correlational and experimental evidence. Am Nat 169(Suppl 1):S112–S121. doi:10.1086/510100

    Article  PubMed  Google Scholar 

  • Shawkey MD, Pillai SR, Hill GE (2009) Do feather-degrading bacteria affect sexually selected plumage color? Naturwissenschaften 96:123–128. doi:10.1007/s00114-008-0462-0

    Article  CAS  PubMed  Google Scholar 

  • Sisask E, Mänd R, Mägi M, Tilgar V (2010) Parental provisioning behaviour in Pied Flycatchers Ficedula hypoleuca is well adjusted to local conditions in a mosaic of deciduous and coniferous habitat. Bird Study 57:447–457. doi:10.1080/00063657.2010.489202

    Article  Google Scholar 

  • Slagsvold T, Lifjeld JT (1990) Influence of male and female quality on clutch size in tits (Parus spp.). Ecology 71:1258–1266. doi:10.2307/1938263

    Article  Google Scholar 

  • Soler JJ, Martín-Vivaldi M, Ruiz-Rodríguez M, Valdivia E, Martín-Platero AM, Martínez-Bueno M, Peralta-Sánchez JM, Méndez M (2008) Symbiotic association between hoopoes and antibiotic-producing bacteria that live in their uropygial gland. Funct Ecol 22:864–871. doi:10.1111/j.1365-2435.2008.01448.x

    Article  Google Scholar 

  • Soler JJ, Peralta-Sánchez JM, Martín-Platero AM, Martín-Vivaldi M, Martínez-Bueno M, Møller AP (2012) The evolution of size of the uropygial gland: mutualistic feather mites and uropygial secretion reduce bacterial loads of eggshells and hatching failures of European birds. J Evol Biol 25:1779–1791. doi:10.1111/j.1420-9101.2012.02561.x

    Article  CAS  PubMed  Google Scholar 

  • Sorci G (2013) Immunity, resistance and tolerance in bird–parasite interactions. Parasite Immunol 35:350–361. doi:10.1111/pim.12047

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford

    Google Scholar 

  • Stettenheim PR (2000) The integumentary morphology of modern birds—an overview. Am Zool 40:461–477. doi:10.1668/0003-1569

  • Swaddle JP, Witter MS, Cuthill IC, Budden A, McCowen P (1996) Plumage condition affects flight performance in common starlings: implications for developmental homeostasis, abrasion and moult. J Avian Biol 27:103–111. doi:10.2307/3677139

    Article  Google Scholar 

  • Tilgar V, Mänd R, Leivits A (1999) Effect of calcium availability and habitat quality on reproduction in Pied Flycatcher Ficedula hypoleuca and Great Tit Parus major. J Avian Biol 30:383–391. doi:10.2307/3677010

    Article  Google Scholar 

  • Wright J, Cuthill I (1989) Manipulation of sex differences in parental care. Behav Ecol Sociobiol 25:171–181. doi:10.1007/BF00302916

    Article  Google Scholar 

  • Wright J, Both C, Cotton PA, Bryant D (1998) Quality vs. quantity: energetic and nutritional trade-offs in parental provisioning strategies. J Anim Ecol 67:620–634. doi:10.1046/j.1365-2656.1998.00221.x

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Anu Rätsep for laboratory assistance, Lepiku Sass for valuable advice concerning fieldwork, Jaanis Lodjak for help in data analysis, and John Davison for commenting on the manuscript. This work was supported by the Estonian Science Foundation (grant number 8566 to RM), the Estonian Ministry of Education and Science (target-financing project number 0180004s09) and the European Regional Development Fund (Center of Excellence FIBIR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grete Alt.

Additional information

Communicated by Oliver P. Love.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alt, G., Saag, P., Mägi, M. et al. Manipulation of parental effort affects plumage bacterial load in a wild passerine. Oecologia 178, 451–459 (2015). https://doi.org/10.1007/s00442-015-3238-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3238-1

Keywords

Navigation