Skip to main content
Log in

Can crystallization of olivine tholeiite give rise to potassic rhyolites?—an experimental investigation

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Experiments were conducted to determine whether the rhyolites and basalts of the intraplate silica-saturated potassic suites could be genetically related through crystallization. Extreme crystallization (96–97%) of a high-MgO (10.62 wt%) olivine tholeiite from the Snake River Plain with an initial bulk water content of 0.4 wt% at a mid-crustal pressure of 4.3 kbar generated potassic rhyolitic liquids similar in major element chemistry to those found in the Quaternary rhyolite domes of the Snake River Plain and their plutonic equivalents in the Proterozoic Laramie Anorthosite Complex. Residual liquids comparable in composition to the bulk rock compositions of intermediate rocks found at the Craters of the Moon and Cedar Butte eruptive centers in the Snake River Plain are also generated along this crystallization path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Andersen DJ, Lindsley DH, Davidson PM (1993) QUILF—a Pascal program to assess equilibria among Fe–Mg–Mn–Ti oxides, pyroxenes, olivine, and quartz. Comput Geosci 19:1333–1350

    Google Scholar 

  • Anderson JL (1983) Proterozoic anorogenic granite plutonism of North America. In: Medaris LG Jr, Byers CW, Mickelson DM, Shanks WC (eds) Geol Soc Am Memoir 161:133–154

  • Barker F, Wones DR, Sharp WN, Desborough GA (1975) Pikes Peak Batholith, Colorado Front Range, and model for origin of “gabbro–anorthosite–syenite–potassic granite” suite. Precambrian Res 2:97–160

    Google Scholar 

  • Carr MJ (2002) IgPet for Windows. Terra Softa, Somerset, NJ

    Google Scholar 

  • Christiansen EH, McCurry M (2007) Contrasting origins of Cenozoic silicic volcanic rocks from the Western Cordillera of the United States. Bull Volcanol (this issue)

  • Christiansen EH, Sheridan MF, Burt DM (1986) The geology and geochemistry of Cenozoic topaz rhyolites from the Western United States. Geol Soc Am Special Paper 205:82

    Google Scholar 

  • DiFrancesco NJ, Whitaker ML, Nekvasil H, Lindsley DH (2003) A road to rhyolite: fractional crystallization experiments on a continental olivine tholeiite. Geol Soc Am 35:631

    Google Scholar 

  • Dixon JE, Stolper EM, Holloway JR (1995) An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part 1: calibration and solubility models. J Petrol 36:1607–1631

    Google Scholar 

  • Emslie RF (1978) Anorthosite massifs, rapakivi granites, and Late Proterozoic rifting of North America. Precambrian Res 7:61–98

    Google Scholar 

  • Emslie RF (1991) Granitoids of rapakivi granite–anorthosite and related associations. Precambrian Res 51:173–192

    Google Scholar 

  • Frost CD, Frost BR (1997) Reduced rapakivi-type granites: the tholeiite connection. Geology 25:647–650

    Google Scholar 

  • Frost BR, Frost CD, Lindsley DH, Scoates JS, Mitchell JN (1993) The Laramie Anorthosite Complex and Sherman Batholith: geology, evolution, and theories of origin. In: Geology of Wyoming. Geol Surv Wyoming Memoir 5:118–161

  • Frost CD, Frost BR, Chamberlain KR, Edwards BR (1999) Petrogenesis of the 1.43 Ga Sherman batholith, SE Wyoming, USA: a reduced, rapakivi-type anorogenic granite. J Petrol 40:1771–1802

    Google Scholar 

  • Haapala I, Lukkari S (2005) Petrological and geochemical evolution of the Kymi stock, a topaz granite cupola within the Wiborg rapakivi batholith, Finland. Lithos 80:347–362

    Google Scholar 

  • Haapala I, Ramo OT (1990) Petrogenesis of the Proterozoic rapakivi granites of Finland. In: Stein HJ, Hannah JL (ed) Geol Soc Am Special Paper 246:275–286

  • Hunter RH, Sparks RSJ (1987) The differentiation of the Skaergaard intrusion. Contrib Mineral Petrol 95:451–461

    Google Scholar 

  • Irvine TN, Baragar WRA (1971) Guide to chemical classification of common volcanic rocks. Can J Earth Sci 8:523–548

    Google Scholar 

  • Kohn SC, Dupree R, Mortuza MG, Henderson CMB (1991) NMR evidence for five- and six-coordinated aluminum fluoride complexes in F-bearing aluminosilicate glasses. Am Mineral 76:309–312

    Google Scholar 

  • Kovalenko VI (1973) Distribution of fluorine in a topaz-bearing quartz keratophyre dike (ongonite) and solubility of fluorine in granitic melts. Geochem Int 10:41–49

    Google Scholar 

  • Kovalenko VI, Kuzmin MI, Antipin VS, Petrov LL (1971) Topaz-bearing quartz keratophyre (ongonite)—a new variety of subvolcanic veined magmatic rocks. Dokl Akad Nauk SSSR 199:430

    Google Scholar 

  • Kuntz MA, Covington HR, Schorr LJ (1992) An overview of basaltic volcanism of the eastern Snake River plain, Idaho. In: Link PK, Kuntz MA, Platt LB (eds) Geol Soc Am Memoir 179:227–267

  • Lange RA (1994) The effect of H2O, CO2 and F on the density and viscosity of silicate melts. In: Carroll MR, Holloway JR (eds) Rev Miner 30:331–369

  • Leeman WP (1982) Evolved and hybrid lavas from the Snake River Plain, Idaho. In: Bonnichsen B, Breckenridge RM (eds) Idaho Bureau of Mines and Geology Bulletin 26:193–202

  • Leeman WP (1982) Rhyolites of the Snake River Plain–Yellowstone Plateau province, Idaho and Wyoming; a summary of petrogenetic models. In: Bonnichsen B, Breckenridge RM (eds) Idaho Bureau of Mines and Geology Bulletin 26:203–212

  • Leeman WP, Vitaliano CJ, Prinz M (1976) Evolved lavas from the Snake River Plain—craters of the Moon National Monument, Idaho. Contrib Mineral Petrol 56:35–60

    Google Scholar 

  • Lindsley DH, Andersen DJ (1983) A two-pyroxene thermometer. J Geophys Res B 88:A887–A906

    Google Scholar 

  • Lindsley DH, Nekvasil H (1989) A ternary feldspar model for all reasons. EOS Trans Am Geophys Union 70:506

    Google Scholar 

  • Litvin VY (2002) Application of fractional crystallization to the origin of continental tholeiitic suites. MS thesis, State University of New York at Stony Brook, Stony Brook, p 138

  • Liu Y, Nekvasil H (2001) Ab initio studies of possible fluorine-bearing four- and fivefold coordinated Al species in aluminosilicate glasses. Am Mineral 86:491–497

    Google Scholar 

  • Liu Y, Nekvasil H (2002) Si–F bonding in aluminosilicate glasses: inferences from ab initio NMR calculations. Am Mineral 87:339–346

    Google Scholar 

  • Luosto U (1991) Crustal structures of Eastern Fennoscandia. Tectonophysics 189:19–27

    Google Scholar 

  • Luosto U, Tiira T, Korhonen H, Azbel I, Burmin V, Buyanov A, Kosminskaya I, Ionkis V, Sharov N (1990) Crust and upper mantle structure along the DSS Baltic profile in SE Finland. Geophys J Int 101:89–110

    Google Scholar 

  • Mandeville CW, Webster JD, Rutherford MJ, Taylor BE, Timbal A, Faure K (2002) Determination of molar absorptivities for infrared absorption bands of H2O in andesitic glasses. Am Mineral 87:813–821

    Google Scholar 

  • Manning DAC (1981) An experimental study of the effects of F on the crystallization of granitic melts. J Geol Soc Lond 138:213–214

    Google Scholar 

  • McCurry M, Hackett WR, Hayden K (1999) Cedar Butte and cogenetic Quaternary rhyolite domes of the Eastern Snake River Plain. In: Hughes SS, Thackray GD (ed) Guidebook to the Geology of Eastern Idaho. Idaho Museum of National History, pp 169–179

  • McCurry M, Hayden KP, Morse LH, Mertzman S (2007) Genesis of post-hotspot A-type rhyolite of the Eastern Snake River Plain volcanic field by extreme fractional crystallization of olivine tholeiite. Bull Volcanol (this issue)

  • Mitchell JN, Scoates JS, Frost CD (1995) High–Al gabbros in the Laramie Anorthosite Complex, Wyoming—implications for the composition of melts parental to Proterozoic anorthosite. Contrib Mineral Petrol 119:166–180

    Google Scholar 

  • Mitchell JN, Scoates JS, Frost CD, Kolker A (1996) The geochemical evolution of anorthosite residual magmas in the Laramie Anorthosite Complex, Wyoming. J Petrol 37:637–660

    Google Scholar 

  • Nekvasil H (1998) Massif anorthosites, anorogenic granites and rift-related tholeiites and ferrobasalts; is there a connection? Geol Soc Am 30:236

    Google Scholar 

  • Nekvasil H, Simon A, Lindsley DH (2000) Crystal fractionation and the evolution of intra-plate hy-normative igneous suites: insights from their feldspars. J Petrol 41:1743–1757

    Google Scholar 

  • Nekvasil H, Lindsley DH, Whitaker ML, Filiberto J, DiFrancesco NJ, Rossier L, Horn J (2003) Tholeiites, anorthosites, potassic granites, sodic trachytes, and tephriphonolites: is there a link? Geol Soc Am 35:395

    Google Scholar 

  • Nekvasil H, Dondolini A, Horn J, Filiberto J, Long H, Lindsley DH (2004) The origin and evolution of silica-saturated alkalic suites: an experimental study. J Petrol 45:693–721

    Google Scholar 

  • Newton RC, Charlu TV, Kleppa OJ (1974) Calorimetric investigation of stability of anhydrous magnesium cordierite with application to granulite facies metamorphism. Contrib Mineral Petrol 44:295–311

    Google Scholar 

  • Peng XH, Humphreys ED (1998) Crustal velocity structure across the eastern Snake River Plain and the Yellowstone swell. J Geophys Res 103:7171–7186

    Google Scholar 

  • Perkins ME, Nash BP (2002) Explosive silicic volcanism of the Yellowstone hotspot: the ash fall tuff record. Geol Soc Am Bull 114:367–381

    Google Scholar 

  • Perkins ME, Nash WP, Brown FH, Fleck RJ (1995) Fallout tuffs of Trapper Creek, Idaho—a record of Miocene explosive volcanism in the Snake River Plain volcanic province. Geol Soc Am Bull 107:1484–1506

    Google Scholar 

  • Rossier L, Lindsley DH, Nekvasil H, Scoates JS (2001) The origin of potassic granite: results of fractional crystallization experiments on a high-Al olivine gabbro from the Laramie Anorthosite Complex, Wyoming. Geol Soc Am 33:87

    Google Scholar 

  • Schaller T, Dingwell DB, Keppler H, Knoller W, Merwin L, Sebald A (1992) Fluorine in silicate glasses: a multinuclear nuclear magnetic resonance study. Geochim Cosmochim Acta 56:701–707

    Google Scholar 

  • Scoates JS, Frost CD, Mitchell JN, Lindsley DH, Frost BR (1996) Residual-liquid origin for a monzonitic intrusion in a mid-Proterozoic anorthosite complex: the Sybille intrusion, Laramie Anorthosite Complex, Wyoming. Geol Soc Am Bull 108:1357–1371

    Google Scholar 

  • Scoates JS, Lindsley DH, van der Kolk D, Anderson K (1999) Fractional crystallization experiments on a candidate parental magma to anorthosite. EOS Trans Am Geophys Union 80:F1096

    Google Scholar 

  • Sparlin MA, Braile LW, Smith RB (1982) Crustal structure of the Eastern Snake River Plain determined from ray trace modeling of seismic refraction data. J Geophys Res 87:2619–2633

    Google Scholar 

  • Spulber SD, Rutherford MJ (1983) The origin of rhyolite and plagiogranite in oceanic crust— n experimental study. J Petrol 24:1–25

    Google Scholar 

  • Stout MZ, Nicholls J (1977) Mineralogy and petrology of Quaternary lavas from the Snake River Plain, Idaho. Can J Earth Sci 14:2140–2156

    Google Scholar 

  • Stout MZ, Nicholls J, Kuntz MA (1994) Petrological and mineralogical variations in 2500–2000 yr B.P. lava flows, Craters of the Moon lava field, Idaho. J Petrol 35:1681–1715

    Google Scholar 

  • Thompson RN (1975) Primary basalts and magma genesis II. Snake River Plain, Idaho, USA. Contrib Mineral Petrol 52:213–232

    Google Scholar 

  • Vorma A (1976) On the petrochemistry of rapakivi granites with special reference to the Laitila Massif, southwestern Finland. Geol Surv Finland Bull 285:98

    Google Scholar 

  • Wen S, Nekvasil H (1994) Solvcalc: an interactive graphics program package for calculating the ternary feldspar solvus and for two-feldspar geothermometry. Comput Geosci 20:1025–1040

    Google Scholar 

  • Whitaker ML, DiFrancesco NJ, Lindsley DH, Nekvasil H (2003) Can fractionation of an olivine tholeiite give rise to ferrodiorites, ferrobasalts, and anorthosites? Geol Soc Am 35:631

    Google Scholar 

  • Whitaker ML, Nekvasil H, Lindsley DH (2004) Can fractionation of an olivine tholeiite give rise to potassic rhyolites? Geol Soc Am 36:25

    Google Scholar 

  • Zeng Q, Stebbins JF (2000) Fluoride sites in aluminosilicate glasses: high-resolution 19F NMR results. Am Mineral 85:863–867

    Google Scholar 

Download references

Acknowledgment

This paper is dedicated to Prof. Ilmari Haapala with great appreciation for his many years of outstanding work on the potassic granites of Fennoscandia. The authors would like to thank S. A. Morse, C. W. Mandeville, and E. H. Christiansen for insightful and constructive reviews of this manuscript. The authors acknowledge the financial support of NSF grant EAR 0003443 to DHL and HN, and EG&G Idaho contract C84-110421 to MM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew L. Whitaker.

Additional information

Editorial responsibility: E. Christiansen

This paper constitutes part of a special issue dedicated to Bill Bonnichsen on the petrogenesis and volcanology of anorogenic rhyolites.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitaker, M.L., Nekvasil, H., Lindsley, D.H. et al. Can crystallization of olivine tholeiite give rise to potassic rhyolites?—an experimental investigation. Bull Volcanol 70, 417–434 (2008). https://doi.org/10.1007/s00445-007-0146-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-007-0146-1

Keywords

Navigation