Skip to main content
Log in

Groundwater drainage from fissures as a source for lahars

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

One mechanism for generating lahars at volcanoes experiencing unrest is the disruption of internal aquifers. These disruptions can trigger releases of large quantities of groundwater. An example of such aquifer disruption occurred at Nevado del Huila Volcano, Colombia, during February and April 2007 when large fractures formed across the summit area of the volcano and lahars were emitted from them. Previous work interpreted that lahar volumes could not be accounted for by melted glacial snow or precipitation, and by elimination suggested that the primary water source was groundwater. Conceptual models have been developed for perched, confined aquifers that have been heated and pressurized by magma intrusions, followed by sudden pressure release and water emission during fracture formation. We consider an alternative end member wherein water release from large fissures at volcanoes is driven by simple gravity drainage. We apply numerical modeling to quantify water discharge from the porous medium surrounding a fissure with a low-elevation free exit. If a long fracture with high vertical extent (on the order of hundreds of meters) intersects a highly connected saturated porous medium, large volumes (on order 103 m3/m of crack length) of water may be released within tens of minutes. The drainage rates from the model may be adequate to account for the Nevado del Huila events if the medium surrounding the crack contains a large volume of water and has high horizontal permeability. This simple but poorly understood mechanism can present a hazard on its own or compound other processes releasing water from volcanoes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aizawa K, Ogawa Y, Ishido T (2009) Groundwater flow and hydrothermal systems within volcanic edifices: delineation by electric self-potential and magnetotellurics. J Geophys Res 114:B01208

    Article  Google Scholar 

  • Arnold BA, Kuzio SP, Robinson BA (2003) Radionuclide transport simulation and uncertainty analyses with the saturated-zone site-scale model at Yucca Mountain, Nevada. J Contam Hydrol 62-63:401–419

    Article  Google Scholar 

  • Ball JL, Stauffer PH, Calder ES, Valentine GA (2015) The hydrothermal alteration of cooling lava domes. Bull Volcanol 77(12):1–16

    Article  Google Scholar 

  • Bartetzko A, Klitzsch N, Iturrino G, Kaufhold S, Arnold J (2006) Electrical properties of hydrothermally altered dacite from the PACMANUS hydrothermal field (ODP Leg 193). J Volcanol Geotherm Res 152(1–2):109–120. https://doi.org/10.1016/j.jvolgeores.2005.10.002

    Article  Google Scholar 

  • Bedrosian PA, Unsworth MJ, Johnston MJS (2007) Hydrothermal circulation at Mount St. Helens determined by self-potential measurements. J Volcanol Geotherm Res 160:137–146. https://doi.org/10.1016/j/jvolgeores.2006.09.003

    Article  Google Scholar 

  • Bernard ML, Zamora M, Géraud Y, Boudon G (2007) Transport properties of pyroclastic rocks from Montagne Pelée volcano (Martinique, Lesser Antilles). J Geophys Res 112(B5). https://doi.org/10.1029/2006JB004385

  • Birdsell KH, Wolfsberg AV, Hollis D, Cherry TA, Bower KM (2000) Groundwater flow and radionuclide transport calculations for a performance assessment of a low-level waste site. J Contam Hydrol 46:99–129

    Article  Google Scholar 

  • Breien H, De Blasio FV, Elverhøi A, Høeg K (2008) Erosion and morphology of a debris flow caused by a glacial lake outburst flood, western Norway. Landslides 3(5):271–280. https://doi.org/10.1007/s10346-008-0118-3

    Article  Google Scholar 

  • Butler JJ (1997) The design, performance, and analysis of slug tests. CRC Press, Boca Raton

    Google Scholar 

  • Calderón Y, Avila G, Ojeda J (1997) Estudio de amenazas y zonificación geológica de la Cuenta Río Páez, Cauca (Study of risk and geological zones of the Rio Paez basin, Cauca), 2nd Pan-American Symposium on Landslides, 2nd COBRAE, Rio de Janeiro

  • Calvari S, Tanner LH, Groppelli G (1998) Debris-avalanche deposits of the Milo lahar sequence and the opening of the Valle del Bove on Etna volcano (Italy). J Volcanol Geotherm Res 87(1–4):193–209. https://doi.org/10.1016/S0377-0273(98)00089-4

    Article  Google Scholar 

  • Christiansen RL, Peterson DW (1981) Chronology of the 1980 eruptive activity. In: Lipman PW, Mullineaux DR (eds) The 1980 Eruptions of Mount St. Helens, Washington. US Geological Survey Professional Paper 1250

  • Coombs ML, Neal CA, Wessels RL, McGimsey RG (2006) Geothermal disruption of summit glaciers at Mount Spurr Volcano, 2004–6: an unusual manifestation of volcanic unrest. US Geological Survey Professional Paper 1732-B, pp 1–33

  • Corey AT (1954) The interrelation between gas and oil relative permeabilities. Prod Month 19:38–41

    Google Scholar 

  • Correa AM, Pulgarín BA (2002) Morfología, estratigrafía, y petrología general del complejo volcánico Nevado del Huila (CVNH) (Énfasis en el flanco occidental). Republica de Colombia Ministerio de Minas y Energía

  • Dash ZV, Robinson BA, Pawar RJ, Chu S (2015) (rev. 3). Software validation report for the FEHM application version 3.1-3.X. Los Alamos National Laboratory 10086-VTP-2.21-00, LA-UR-15-27776

  • Delcamp A, Roberti G, van Wyk de Vries B (2016) Water in volcanoes: evolution, storage and rapid release during landslides. Bull Volcanol 78:87. https://doi.org/10.1007/s00445-016-1082-8

    Article  Google Scholar 

  • Fagents SA, Baloga SM (2006) Toward a model for the bulking and debulking of lahars. J Geophys Res Solid Earth 111(B10). https://doi.org/10.1020/2005JB003986

  • Farquharson J, Heap MJ, Varley NR, Baud P, Reuschlé T (2015) Permeability and porosity relationships of edifice-forming andesites: a combined field and laboratory study. J Volcanol Geotherm Res 297:52–68

    Article  Google Scholar 

  • Finn CA, Deszcz-Pan M, Anderson ED, John DA (2007) Three-dimensional geophysical mapping of rock alteration and water content at Mount Adams, Washington: implications for lahar hazards. J Geophys Res Solid Earth 112(B10). https://doi.org/10.1029/2006JB004783

  • Fisher AT, Von Herzen R (2005) Models of hydrothermal circulation within 106 Ma seafloor: constraints on the vigor of fluid circulation and crustal properties below the Madeira Abyssal Plain. Geochem Geophys Geosyst (G3) 6(11). https://doi.org/10.1029/2005GC001013

  • Graettinger AH, Manville V, Briggs RM (2010) Depositional record of historic lahars in the upper Whangaehu Valley, Mt. Ruapehu, New Zealand: implications for trigger mechanisms, flow dynamics and lahar hazards. Bull Volcanol 72(3):279–296. https://doi.org/10.1007/s00445-009-0318-2

    Article  Google Scholar 

  • Haar L, Gallagher JS, Kell GS (1984) NBS/NRC steam, tables. Hemisphere, New York

    Google Scholar 

  • Hantush MS, Jacob CE (1955) Non-steady radial flow in an infinite leaky aquifer. Am Geophys Union Trans 36(1):95–100

    Article  Google Scholar 

  • Heap MJ, Kennedy BM (2016) Exploring the scale-dependent permeability of fractured andesite. Earth Planet Sci Lett 447:139–150

    Article  Google Scholar 

  • Heap MJ, Wadsworth FB (2016) Closing an open system: pore pressure changes in permeable edifice rock at high strain rates. J Volcanol Geotherm Res 315:40–50. https://doi.org/10.1016/j.jvolgeores.2016.02.011

    Article  Google Scholar 

  • Heap MJ, Kennedy BM, Furquharson JI, Ashworth J, Mayer K, Letham-Brake M, Reuschle T, Gilg A, Scheu B, Lavallée Y, Siratovich P, Cole J, Jolly A, Baud P, Dingwell DB (2017) A multidisciplinary approach to quantify the permeability of the Whakaari/White Island volcanic hydrothermal system (Taupo Volcanic Zone, New Zealand). J Volcanol Geotherm Res 332:88–108

    Article  Google Scholar 

  • Hemmings B, Whitaker FF, Gottsmann J, Hawes M (2016) Non-eruptive ice melt driven by internal heat at glaciated stratovolcanoes. J Volcanol Geotherm Res 327:385–397. https://doi.org/10.1016/j.jvolgeores.2016.09.004

    Article  Google Scholar 

  • Huggel C, Ceballos JL, Pulgarín B, Ramírez J, Thouret JC (2007) Review and reassessment of hazards owing to volcano-glacier interactions in Colombia. Ann Glaciol 45:128–136. https://doi.org/10.3189/172756407782282408

    Article  Google Scholar 

  • Hurwitz S, Kipp KL, Ingebritsen SE, Reid ME (2003) Groundwater flow, heat transport, and water table position within volcanic edifices: implications for volcanic processes in the Cascade Range. J Geophys Res 108(B12):2557

    Article  Google Scholar 

  • Hvorslev MJ (1951) Time lag and soil permeability in ground-water observations, Bull. No. 36, Waterways exper Sta Corps Of Engineers, US Army, Vicksburg, Mississippi

  • Jordan AB, Boukhalfa H, Caporuscio FA, Robinson BA, Stauffer PH (2015) Hydrous mineral dehydration around heat-generating nuclear waste in bedded salt formations. Environ Sci Technol 5:1–13. https://doi.org/10.1021/acs.est.5b01002

    Google Scholar 

  • Kelkar S, Tucci P, Srinivasan G, Roback R, Robinson B, Duke C, Rehfeldt K (2013) Breakthrough of radioactive plumes in saturated volcanic rock: implications from the Yucca Mountain Site. Geofluids 13(3):273–282. https://doi.org/10.1111/gfl/12035

    Article  Google Scholar 

  • Major JJ, Newhall CG (1989) Snow and ice perturbation during historical volcanic eruptions and the formation of lahars and floods. Bull Volcanol 52:1–27. https://doi.org/10.1007/BF00641384

    Article  Google Scholar 

  • Monsalve ML, Pulgarín BA, Mojica J, Santacoloma CC, Cardona CE (2010) Emisiones de ceniza asociados a la actividad del Volcán Nevado del Huila (Colombia), 2007–2009. XIII Congreso Colombiano de Geología

  • Newhall CG, Albano SE, Matsumoto N, Sandoval T (2001) Roles of groundwater in volcanic unrest. J Geol Soc Philippines 56(3–4):69–84

    Google Scholar 

  • Pierson TC, Janda RJ, Thouret JC, Borrero CA (1990) Perturbation and melting of snow and ice by the 13 November 1985 eruption of Nevado del Ruiz, Colombia, and consequent mobilization, flow and deposition of lahars. J Volcanol Geotherm Res 41(1–4):17–66. https://doi.org/10.1016/0377-0273(90)90082-Q

    Article  Google Scholar 

  • Pulgarín B, Jordan E, Linder W (2005) Aspectos geológicos y cambio glaciar del Volcán Nevado del Huila entre 1.961 y 1.995. Proceedings, Conferencia cambio climático, Bogotá, Colombia

  • Pulgarín B, Cardona CE, Santacoloma CC, Agudelo A, Calvache ML, Monsalve ML (2007) Erupciones del Volcán Nevado del Huila, en febrero y abril de 2007, y los cambios en su masa glaciar (Eruptions of the Nevado del Huila Volcano in February and April 2007 and the changes in its glacial mass). INGEOMINAS Boletín geológico 42(1–2):109–127

    Google Scholar 

  • Pulgarín B, Cardona C, Agudelo A, Santacoloma C, Monsalve M, Calvache M, Murcia H, Ibánez D, García J, Murcia C, Cuellar M, Ordóñez M, Medina E, Balanta R, Calderón Y, Leiva O (2009) Erupciones históricas recientes del Volcán Nevado del Huila, cambios morfológicos y lahares asociados. XII Congreso Colombiano de Geología

  • Reid ME (2004) Massive collapse of volcano edifices triggered by hydrothermal pressurization. Geology 32:373–376

    Article  Google Scholar 

  • Santacoloma C, Cardona CE, White R, McCausland W, Trujillo N, Bolaños R, Manzo O, Narváez A (2009) Aspectos sísmicos de las erupciones freáticas y freatomagmática del Volcán Nevado del Huila (Colombia). XII Congreso Colombiano de Geología

  • Schneider D, Delgado Granados H, Huggel C, Kaab A (2008) Assessing lahars from ice-capped volcanoes using ASTER satellite data, the SRTM DTM and two different flow models: case study on Iztaccihuatl (central Mexico). Nat Hazards Earth Syst Sci 8(3):559–571

    Article  Google Scholar 

  • Scott KM, Vallance JW, Kerle N, Devoli G (2005) Catastrophic precipitation-triggered lahar at Casita volcano, Nicaragua: occurrence, bulking and transformation. Earth Surf Proc Landforms 30:59–75. https://doi.org/10.1002/esp.1127

    Article  Google Scholar 

  • Spinelli GA, Fisher AT (2004) Hydrothermal circulation within rough basement on the Juan de Fuca Ridge flank. Geochem Geophys Geosys 5(2):Q02001. https://doi.org/10.01029/02003GC000616

    Article  Google Scholar 

  • Stauffer PH (2006) Flux flummoxed: a proposal for consistent usage. Ground Water 44(2):125–128

    Article  Google Scholar 

  • Stauffer PH, Auer LH, Rosenberg ND (1997) Compressible gas in porous media: a finite amplitude analysis of natural convection. Int J Heat Mass Transf 40(7):1585–1589

    Article  Google Scholar 

  • Stauffer PH, Birdsell KH, Witkowski MS, Hopkins JK (2005) Vadose zone transport of 1,1,1-trichloroethane. Vadose Zone J 4(3):760–773

    Article  Google Scholar 

  • Tenma N, Yamaguchi T, Zyvoloski G (2008) The Hijiori hot dry rock test site, Japan: evaluation and optimization of heat extraction from a two-layered reservoir. Geothermics 37:19–52. https://doi.org/10.1016/j.geothermics.2007.11.002

    Article  Google Scholar 

  • Theis CV (1935) The relation between the lower of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Am Geophys Union Trans 16:519–524

    Article  Google Scholar 

  • Umball JV, Rodolfo KS (1996) The 1991 lahars of southwestern Mount Pinatubo and evolution of the lahar-dammed Mapanuepe Lake. In: Newhall CG and Punongbayan RS (eds) Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines. Philippine Institute of Volcanology and Seismology and University of Washington Press, pp 951–970

  • Vallance JW, Scott KM (1997) The Osceola mudflow from Mount Rainier: sedimentology and hazard implications of a huge clay-rich debris flow. GSA Bull 109(2):143–163. https://doi.org/10.1130/0016-7606(1997)109<0143:TOMFMR>2.3.CO;2

    Article  Google Scholar 

  • Van Genuchten MT (1980) A closed form equation for predicting hydraulic conductivity of unsaturated soils. J Soil Sci Soc Am 44:892–898

    Article  Google Scholar 

  • Watanabe T, Shimizu Y, Noguchi S, Nakada S (2008) Permeability measurements on rock samples from Unzen Scientific Drilling Project Drill Hole 4 (USDP-4). J Volcanol Geotherm Res 175(1–2):82–90. https://doi.org/10.1016/j.jvolgeores.2008.03.021

    Article  Google Scholar 

  • Waythomas CF, Pierson TC, Major JJ, Scott WE (2013) Voluminous ice-rich and water-rich lahars generated during the 2009 eruption of Redoubt Volcano, Alaska. J Volcanol Geotherm Res 259:389–413. https://doi.org/10.1016/j/jvolgeores.2012.05.012

    Article  Google Scholar 

  • Winslow DM, Fisher AT, Stauffer PH, Gable CW, Zyvoloski GA (2016) Three-dimensional modeling of outcrop-to-outcrop hydrothermal circulation on the eastern flank of the Juan de Fuca Ridge. J Geophys Res Solid Earth 121(3):1365–1382. https://doi.org/10.1002/2015JB012606

    Article  Google Scholar 

  • Wolfe EW, Hoblitt RP (1996) Overview of the eruptions. In: Newhall CG and Punongbayan RS (eds) Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines. Philippine Institute of Volcanology and Seismology and University of Washington Press, pp 3–20

  • Worni R, Huggel C, Stoffel M, Pulgarín B (2012) Challenges of modeling current very large lahars at Nevado del Huila Volcano, Colombia. Bull Volcanol 74:309–324. https://doi.org/10.1007/s00445-011-0522-8

    Article  Google Scholar 

  • Yamaguchi T, Kuriyagawa M, Sato Y, Oikawa Y, Kobayashi H, Matsunaga I, Zyvoloski G (1991) Heat extraction test from hot dry rock and reservoir modeling. J Geotherm Res Soc Japan 13:73–93

    Google Scholar 

  • Zyvoloski GA, Robinson BA, Dash ZV, Kelkar S, Viswanathan HS, Pawar RJ, Stauffer PH, Miller TA, Chu SP (2012) Software users manual (UM) for the FEHM application version 3.1-3.X. Los Alamos Nat Lab Rep, LA-UR-12-24493

Download references

Acknowledgements

The authors thank the scientists and staff of the Servicio Geológico Colombiano for their support and assistance with sharing and evaluating data from the Huila eruptions. Collaboration between the University at Buffalo and Servicio was funded by the VHub project. This work was also improved by discussions with Dr. Jessica L. Ball at USGS-Menlo Park and Dr. Benjamin van Wyk de Vries at the Universit Clermont Auvergne in Clermont-Ferrand, France, as well as by comments from two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Johnson.

Additional information

Editorial responsibility: L. Capra

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, P.J., Valentine, G.A., Stauffer, P.H. et al. Groundwater drainage from fissures as a source for lahars. Bull Volcanol 80, 39 (2018). https://doi.org/10.1007/s00445-018-1214-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-018-1214-4

Keywords

Navigation