Skip to main content

Advertisement

Log in

A microscale approach for simple and rapid monitoring of cell growth and lipid accumulation in Neochloris oleoabundans

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Due to the increasing environmental problems caused by the use of fossil fuels, microalgae have been spotlighted as renewable resources to produce biomass and biofuels. Therefore, the investigation of the optimum culture conditions of microalgae in a short time is one of the important factors for improving growth and lipid productivity. Herein, we developed a PDMS-based high-throughput screening system to rapidly and easily determine the optimum conditions for high-density culture and lipid accumulation of Neochloris oleoabundans. Using the microreactor, we were able to find the optimal culture conditions of N. oleoabundans within 5 days by rapid and parallel monitoring growth and lipid induction under diverse conditions of light intensity, pH, CO2 and nitrate concentration. We found that the maximum growth rate (µ max = 2.13 day−1) achieved in the microreactor was 1.58-fold higher than that in a flask (µ max = 1.34 day−1) at the light intensity of 40 µmol photons m−2 s−1, 5 % CO2 (v/v), pH 7.5 and 7 mM nitrate. In addition, we observed that the accumulation of lipid in the microreactor was 1.5-fold faster than in a flask under optimum culture condition. These results show that the microscale approach has the great potential for improving growth and lipid productivity by high-throughput screening of diverse optimum conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tornabene TG, Holzer G, Lien S, Burris N (1983) Lipid composition of the nitrogen starved green alga Neochloris oleoabundans. Enzyme Microb Technol 5:435–440

    Article  CAS  Google Scholar 

  2. Sousa C, Compadre A, Vermuë MH, Wijffels RH (2013) Effect of oxygen at low and high light intensities on the growth of Neochloris oleoabundans. Algal Res 2:122–126

    Article  Google Scholar 

  3. Sousa C, Winter L, Janssen M, Vermuë MH, Wijffels RH (2012) Growth of the microalgae Neochloris oleoabundans at high partial oxygen pressures and sub-saturating light intensity. Bioresour Technol 104:565–570

    Article  CAS  Google Scholar 

  4. Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636

    Article  CAS  Google Scholar 

  5. Adriana GH, Rafael VD, Leobardo SC, Alfredo M (2013) Nitrogen limitation in Neochloris oleoabundans: a reassessment of its effect on cell growth and biochemical composition. Appl Biochem Biotechnol 171:1775–1791

    Article  Google Scholar 

  6. Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186

    Article  CAS  Google Scholar 

  7. Regehr KJ, Donenech M, Koepsel JT, Carver KC, Ellison-Zelski SJ, Murphy WL, Schuler LA, Alarid ET, Beebe DJ (2009) Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip 9:2132–22139

    Article  CAS  Google Scholar 

  8. Vollmer AP, Probstein RF, Gilbert R, Thorsen T (2005) Development of an integrated microfluidic platform for dynamic oxygen sensing and delivery in a flowing medium. Lab Chip 5:1059–1066

    Article  CAS  Google Scholar 

  9. West J, Becker M, Tombrink S, Manz A (2008) Micro total analysis systems: latest achievements. Anal Chem 80:4403–4419

    Article  CAS  Google Scholar 

  10. Sia SK, Whitesides GM (2003) Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24:3563–3576

    Article  CAS  Google Scholar 

  11. Khademhossini A, Langer R, Borenstein J, Vacanti JP (2006) Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci USA 103:2480–2487

    Article  Google Scholar 

  12. Tani H, Maehana K, Kamidate T (2004) Chip-based bioassay using bacterial sensor strains immobilized in three-dimensional microfluidic network. Anal Chem 76:6693–6697

    Article  CAS  Google Scholar 

  13. Yang M, Li CW, Yang J (2002) Cell docking and on-chip monitoring of cellular reaction with a controlled concentration gradient on a microfluidic device. Anal Chem 74:3991–4001

    Article  CAS  Google Scholar 

  14. Koh WG, Itle MV, Pishko MV (2003) Moding of hydrogel microstructures to create multiphenotype cell microarrays. Anal Chem 75:5783–5789

    Article  CAS  Google Scholar 

  15. Erxleben HA, Manion MK, Hockenbery DM, Scampavia L, Ruzicka J (2004) A novel approach for monitoring extracellular acidification rate: based on bead injection spectrophotometry and the lab-on-valve system. Analyst 129:205–212

    Article  CAS  Google Scholar 

  16. Kwak HS, Kim JYH, Sim SJ (2015) A microreactor system for cultivation of Haematococcus pluvialis and astaxanthin production. J Nanosci Nanotechnol 15:1618–1623

    Article  CAS  Google Scholar 

  17. Au AH, Shih SCC, Wheeler AR (2011) Integrated microbioreactor for culture and analysis of bacteria, algae and yeast. Biomed Microdevices 13:41–50

    Article  CAS  Google Scholar 

  18. Holcomb RE, Mason LJ, Reardon KF, Cropek DM, Henry CS (2011) Culturing and investigation of stress-induced lipid accumulation in microalgae using a microfluidic device. Anal Bioanal Chem 400:245–253

    Article  CAS  Google Scholar 

  19. Chem M, Mertiri T, Holland T, Basu AS (2012) Optical microplates for high-throughput screening of photosynthesis in lipid-producing algae. Lab Chip 12:3870–3874

    Article  Google Scholar 

  20. Bae S, Kim CW, Choi JS, Yang JW, Seo TS (2013) An integrated microfluidic device for the high-throughput screening of microalgal cell culture conditions that induce high growth rate and lipid content. Anal Bioanal Chem 405:9365–9374

    Article  CAS  Google Scholar 

  21. Kim HS, Weiss TL, Thapa HR, Devarenne TP, Han A (2014) A microfluidic photobioreactor array demonstrating high-throughput screening for microglal oil production. Lab Chip 14:1415–1425

    Article  CAS  Google Scholar 

  22. Lim HS, Kim JYH, Kwak HS, Sim SJ (2014) Integrated microfluidic platform for multiple processes from microalgal culture to lipid extraction. Anal Chem 86:8685–8692

    Article  Google Scholar 

  23. Whitesides GM, Osturi E, Takayama S, Jiang XY, Ingber DE (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–373

    Article  CAS  Google Scholar 

  24. Tokarskyy O, Marshall DL (2008) Mechanism of synergistic inhibition of Listeria monocytogenes growth by lactic acid, monolaurin, and nisin. Appl. Environ. Microb. 74:7126–7129

    Article  CAS  Google Scholar 

  25. Dortch Q (1982) Effect of growth conditions on accumulation of internal nitrate, ammonium, amino acids, and protein in three marine diatoms. J Exp Mar Biol Ecol 61:243–264

    Article  CAS  Google Scholar 

  26. Santos AM, Janssen M, Lamers PP, Evers WAC, Wijffels RH (2012) Growth of oil accumulating microalga Neochloris oleoabundans under alkaline-saline conditions. Bioresource Technol. 104:593–599

    Article  CAS  Google Scholar 

  27. Santos AM, Wijffels RH, Lamers PP (2014) pH-upshock yields more lipids in nitrogen-starved Neochloris oleoabundans. Bioresource Technol. 152:299–306

    Article  CAS  Google Scholar 

  28. McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJA, Whitesideds GM (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 2:27–40

    Article  Google Scholar 

  29. Abolmaaty A, Meyer DML (2011) PDMS chip assay for the detection of biofilm formation. World Appl. Sci. J. 13:1800–1806

    CAS  Google Scholar 

  30. Yu H, Meyvantsson I, Shkel IA, Beebe DJ (2005) Diffusion dependent cell behavior in microenvironments. Lab Chip 5:1089–1095

    Article  CAS  Google Scholar 

  31. Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical analysis system: a novel concept for chemical sensing. Sens. Actuator B. 1:244–248

    Article  CAS  Google Scholar 

  32. Thaitrong N, Charlermroj R, Himananto O, Seepiban C, Karoonuthaisiri N (2013) Implementation of microfluidic sandwich ELISA for superior detection of plant pathogens. PLoS ONE 8:e83231

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by grants (2014M1A8A1049278) from Korea CCS R&D Center of the NRF funded by the Ministry of Science, ICT, and Future Planning of Korea, the National Research Foundation of Korea (NRF) grants (Grant No. NRF-2013R1A2A1A01015644/2010-0027955), the Korea Institute of Energy Technology Evaluation and Planning and Ministry of Trade, Industry and Energy of “Energy Efficiency and Resources Technology R&D” project Korea (20152010201900) and University-Institute Cooperation Program (2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Jun Sim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwak, H.S., Kim, J.Y.H. & Sim, S.J. A microscale approach for simple and rapid monitoring of cell growth and lipid accumulation in Neochloris oleoabundans . Bioprocess Biosyst Eng 38, 2035–2043 (2015). https://doi.org/10.1007/s00449-015-1444-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1444-1

Keywords

Navigation