Skip to main content

Advertisement

Log in

Laccases for biorefinery applications: a critical review on challenges and perspectives

  • Mini Review
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Modern biorefinery concepts focus on lignocellulosic biomass as a feedstock for the production of next generation biofuels and platform chemicals. Lignocellulose is a recalcitrant composite consisting of several tightly packed components which are stuck together by the phenolic polymer lignin hampering the access to the carbohydrate compounds of biomass. Certain saprophytic organisms are able to degrade lignin by the use of an enzymatic cocktail. Laccases have been found to play a major role during lignin degradation and have therefore been intensively researched with regard to potential applications for biomass processing. Within this review, we go along the process chain of a third generation biorefinery and highlight the process steps which could benefit from laccase applications. Laccases can assist the pretreatment of biomass and promote the subsequent enzymatic hydrolysis of cellulose by the oxidative modification of residual lignin on the biomass surface. In combination with mediator molecules laccases are often reported being able to catalyze the depolymerization of lignin. Studies with lignin model compounds confirm the chemical possibility of a laccase-catalyzed cleavage of lignin bonds, but the strong polymerization activity of laccase counters the decomposition of lignin by repolymerizing the degradation products. Therefore, it is a key challenge to shift the catalytic performance of laccase towards lignin cleavage by optimizing the process conditions. Another field of application for laccases is the detoxification of biomass hydrolyzates by the oxidative elimination of lignin-derived phenolics which inhibit hydrolytic enzymes and are toxic for fermentation organisms. This review critically discusses the potential applications for laccases in biorefinery processes and emphasizes the challenges and perspectives which go along with the use of this enzyme for the technical utilization of lignocellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kamm B, Kamm M (2004) Principles of biorefineries. Appl Microbiol Biotechnol 64:137–145

    Article  CAS  Google Scholar 

  2. Graham-Rowe D (2011) Agriculture: beyond food versus fuel. Nature 474:6–8

    Article  CAS  Google Scholar 

  3. Leonowicz A, Cho N, Luterek J, Wilkolazka A, Wojtas-Wasilewska M, Matuszewska A, Hofrichter M, Wesenberg D, Rogalski J (2001) Fungal laccase: properties and activity on lignin. J Basic Microbiol 41:185–227

    Article  CAS  Google Scholar 

  4. Fava F, Totaro G, Diels L, Reis M, Duarte J, Carioca OB, Poggi-Varaldo HM, Ferreira BS (2015) Biowaste biorefinery in Europe: opportunities and research & development needs. N Biotechnol 32:100–108

    Article  CAS  Google Scholar 

  5. Doherty WOS, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind Crops Prod 33:259–276

    Article  CAS  Google Scholar 

  6. Perlack R, Wright L, Turhollow A (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. US Dep. Energy

  7. Himmel M, Ding S, Johnson D (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

  8. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96:1959–1966

    Article  CAS  Google Scholar 

  9. Zhang YHP (2011) What is vital (and not vital) to advance economically-competitive biofuels production. Process Biochem 46:2091–2110

    Article  CAS  Google Scholar 

  10. Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefining 2:26–40

    Article  CAS  Google Scholar 

  11. Fischer R, Ostafe R, Twyman R (2013) Cellulases from insects. Adv Biochem Eng Biotechnol 136:51–64

    CAS  Google Scholar 

  12. Ke J, Laskar DD, Gao D, Chen S (2012) Advanced biorefinery in lower termite-effect of combined pretreatment during the chewing process. Biotechnol Biofuels 5:11

    Article  CAS  Google Scholar 

  13. Zakzeski J, Bruijnincx PC, Jongerius AL, Weckhuysen BM (2009) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599

    Article  CAS  Google Scholar 

  14. Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN (2007) Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? In: Olsson L (ed) Biofuels. Springer, Berlin, Heidelberg, pp 67–93

    Chapter  Google Scholar 

  15. Cullen D (1997) Recent advances on the molecular genetics of ligninolytic fungi. J Biotechnol 53:273–289

    Article  CAS  Google Scholar 

  16. Call HP, Mücke I (1997) History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym(R)-process). J Biotechnol 53:163–202

    Article  CAS  Google Scholar 

  17. Argyropoulos D, Menachem S (1997) Lignin. Adv Biochem Eng Biotechnol 57:127–158

    CAS  Google Scholar 

  18. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  CAS  Google Scholar 

  19. Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905

    Article  CAS  Google Scholar 

  20. Lewis NG, Yamamoto E (1990) Lignin—occurrence, biogenesis and biodegradation. Annu Rev Plant Physiol Plant Mol Biol 41:455–496

    Article  CAS  Google Scholar 

  21. Chakar FS, Ragauskas AJ (2004) Review of current and future softwood kraft lignin process chemistry. Ind Crops Prod 20:131–141

    Article  CAS  Google Scholar 

  22. Demirbaş A (2001) Relationships between lignin contents and heating values of biomass. Energy Convers Manag 42:183–188

  23. Azadi P, Inderwildi OR, Farnood R, King DA (2013) Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sustain Energy Rev 21:506–523

    Article  CAS  Google Scholar 

  24. Yoshida H (1883) LXIII. Chemistry of lacquer (Urushi). Part I. Communication from the Chemical Society of Tokio. J Chem Soc Trans 43:472

  25. Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G (2010) Laccases: a never-ending story. Cell Mol Life Sci 67:369–385

    Article  CAS  Google Scholar 

  26. Dwivedi UN, Singh P, Pandey VP, Kumar A (2011) Structure-function relationship among bacterial, fungal and plant laccases. J Mol Catal B Enzym 68:117–128

    Article  CAS  Google Scholar 

  27. Dashtban M, Schraft H, Syed TA, Qin W (2010) Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol 1:36–50

    CAS  Google Scholar 

  28. Solomon EI, Augustine AJ, Yoon J (2008) O2 reduction to H2O by the multicopper oxidases. Dalton Trans 9226:3921–3932

    Article  CAS  Google Scholar 

  29. Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26

    Article  CAS  Google Scholar 

  30. Yaropolov A, Skorobogatko O, Vartanov S, Varfolomeyev S (1994) Laccase—properties, catalytic mechanism and applicability. Appl Biochem Biotechnol 49:257–280

    Article  CAS  Google Scholar 

  31. Shleev S, Reimann CT, Serezhenkov V, Burbaev D, Yaropolov AI, Gorton L, Ruzgas T (2006) Autoreduction and aggregation of fungal laccase in solution phase: possible correlation with a resting form of laccase. Biochimie 88:1275–1285

    Article  CAS  Google Scholar 

  32. Lee S, George S, Antholine W, Hedmann B, Hodgson K, Solomon EI (2002) Nature of the intermediate formed in the reduction of O2 to H2O at the trinuclear copper cluster active site in native laccase. J Am Chem Soc 124:6180–6193

    Article  CAS  Google Scholar 

  33. Morozova O, Shumakovich G, Gorbacheva M, Shleev S, Yaropolov A (2007) “Blue” laccases. Biochem 72:1136–1150

    CAS  Google Scholar 

  34. Leontievsky A, Myasoedova N, Pozdnyakova N, Golovleva L (1997) `Yellow’ laccase of Panus tigrinus oxidizes non-phenolic substrates without electron-transfer mediators. FEBS Lett 413:446–448

    Article  CAS  Google Scholar 

  35. Leontievsky A, Myasoedova N, Baskunov B, Pozdnyakova N, Vares T, Kalkkinen N, Hatakka A, Golovleva L (1999) Reactions of blue and yellow fungal laccases with lignin model compounds. Biochem 64:1150–1156

    CAS  Google Scholar 

  36. Pozdnyakova N, Rodakiewicz-Nowak J, Turkovskaya O (2004) Catalytic properties of yellow laccase from Pleurotus ostreatus D1. J Mol Catal B Enzym 30:19–24

    Article  CAS  Google Scholar 

  37. Baldrian P (2006) Fungal laccases—occurrence and properties. FEMS Microbiol Rev 30:215–242

    Article  CAS  Google Scholar 

  38. Maijala P, Mattinen M-L, Nousiainen P, Kontro J, Asikkala J, Sipilä J, Viikari L (2012) Action of fungal laccases on lignin model compounds in organic solvents. J Mol Catal B Enzym 76:59–67

    Article  CAS  Google Scholar 

  39. Rodakiewicz-Nowak J, Haber J, Pozdnyakova N, Leontievsky A, Golovleva LA (1999) Effect of ethanol on enzymatic activity of fungal laccases. Biosci Rep 19:589–600

    Article  CAS  Google Scholar 

  40. Rodakiewicz-Nowak J, Jarosz-Wilkołazka A (2007) Catalytic activity of Cerrena unicolor laccase in aqueous solutions of water-miscible organic solvents—experimental and numerical description. J Mol Catal B Enzym 44:53–59

    Article  CAS  Google Scholar 

  41. Cantarella G, d’Acunzo F, Galli C (2003) Determination of laccase activity in mixed solvents: comparison between two chromogens in a spectrophotometric assay. Biotechnol Bioeng 82:395–398

    Article  CAS  Google Scholar 

  42. d’Acunzo F, Barreca AM, Galli C (2004) Determination of the activity of laccase, and mediated oxidation of a lignin model compound, in aqueous-organic mixed solvents. J Mol Catal B Enzym 31:25–30

    Article  CAS  Google Scholar 

  43. Barreca AM, Fabbrini M, Galli C, Gentili P, Ljunggren S (2003) Laccase/mediated oxidation of a lignin model for improved delignification procedures. J Mol Catal B Enzym 26:105–110

    Article  CAS  Google Scholar 

  44. Fiţigău I, Peter F, Boeriu C (2013) Oxidative polymerization of lignins by laccase in water-acetone mixture. Acta Biochim Pol 60:817–822

    Google Scholar 

  45. Rehmann L, Ivanova E, Ferguson JL, Gunaratne HQN, Seddon KR, Stephens GM (2012) Measuring the effect of ionic liquids on laccase activity using a simple, parallel method. Green Chem 14:725–733

    Article  CAS  Google Scholar 

  46. Harwardt N, Stripling N, Roth S, Liu H, Schwaneberg U, Spiess AC (2014) Effects of ionic liquids on the reaction kinetics of a laccase-mediator system. RSC Adv 4:17097–17104

    Article  CAS  Google Scholar 

  47. Liu H, Zhu L, Bocola M, Chen N, Spiess AC, Schwaneberg U (2013) Directed laccase evolution for improved ionic liquid resistance. Green Chem 15:1348–1355

    Article  CAS  Google Scholar 

  48. Crestini C, Argyropoulos DS (1998) The early oxidative biodegradation steps of residual kraft lignin models with laccase. Bioorg Med Chem 6:2161–2169

    Article  CAS  Google Scholar 

  49. Bourbonnais R, Paice MG (1990) Oxidation of non-phenolic substrates: an expanded role for laccase in lignin biodegradation. FEBS Lett 267:99–102

    Article  CAS  Google Scholar 

  50. Shiraishi T, Sannami Y, Kamitakahara H, Takano T (2013) Comparison of a series of laccase mediators in the electro-oxidation reactions of non-phenolic lignin model compounds. Electrochim Acta 106:440–446

    Article  CAS  Google Scholar 

  51. Bourbonnais R, Leech D, Paice MG (1998) Electrochemical analysis of the interactions of laccase mediators with lignin model compounds. Biochim Biophys Acta 1379:381–390

    Article  CAS  Google Scholar 

  52. Xu F, Kulys J, Duke K (2000) Redox chemistry in laccase-catalyzed oxidation of N-hydroxy compounds. Appl Environ Microbiol 66:1–6

    Article  Google Scholar 

  53. Fabbrini M, Galli C, Gentili P (2002) Comparing the catalytic efficiency of some mediators of laccase. J Mol Catal B Enzym 16:231–240

    Article  CAS  Google Scholar 

  54. Fabbrini M, Galli C, Gentili P (2002) Radical or electron-transfer mechanism of oxidation with some laccase/mediator systems. J Mol Catal B Enzym 18:169–171

    Article  CAS  Google Scholar 

  55. Galli C, Gentili P (2004) Chemical messengers: mediated oxidations with the enzyme laccase. J Phys Org Chem 17:973–977

    Article  CAS  Google Scholar 

  56. Baiocco P, Barreca AM, Fabbrini M, Galli C, Gentili P (2003) Promoting laccase activity towards non-phenolic substrates: a mechanistic investigation with some laccase-mediator systems. Org Biomol Chem 1:191–197

    Article  CAS  Google Scholar 

  57. Astolfi P, Brandi P, Galli C, Gentili P (2005) New mediators for the enzyme laccase: mechanistic features and selectivity in the oxidation of non-phenolic substrates. New J Chem 29:1308–1317

    Article  CAS  Google Scholar 

  58. Fabbrini M, Galli C, Gentili P, Macchitella D (2001) An oxidation of alcohols by oxygen with the enzyme laccase and mediation by TEMPO. Tetrahedron Lett 42:7551–7553

    Article  CAS  Google Scholar 

  59. Galli C, Gentili P, Lanzalunga O, Lucarini M, Pedulli GF (2004) Spectrophotometric, EPR and kinetic characterisation of the > N–O center dot radical from 1-hydroxybenzotriazole, a key reactive species in mediated enzymatic oxidations. Chem Commun (20):2356–2357

  60. Arends IWCE, Li Y-X, Ausan R, Sheldon RA (2006) Comparison of TEMPO and its derivatives as mediators in laccase catalysed oxidation of alcohols. Tetrahedron 62:6659–6665

    Article  CAS  Google Scholar 

  61. Shin W, Cho H, Cho N (2006) Screening of new mediators for lignin degradation based on their electrochemical properties and interactions with fungal laccase. J Korea TAPPI 38:5

    Google Scholar 

  62. Soares GMB, de Amorim MTP, Costa-Ferreira M (2001) Use of laccase together with redox mediators to decolourize Remazol Brilliant Blue R. J Biotechnol 89:123–129

    Article  CAS  Google Scholar 

  63. Rehmann L, Ivanova E, Gunaratne HQN, Seddon KR, Stephens G, Gunaratne N (2013) Enhanced laccase stability through mediator partitioning into hydrophobic ionic liquids. Green Chem 16:1462–1469

    Article  Google Scholar 

  64. Bendl RF, Kandel JM, Amodeo KD, Ryder AM, Woolridge EM (2008) Characterization of the oxidative inactivation of xylanase by laccase and a redox mediator. Enzyme Microb Technol 43:149–156

    Article  CAS  Google Scholar 

  65. Bourbonnais R, Paice MG, Freiermuth B, Bodie E, Borneman S (1997) Reactivities of various mediators and laccases with kraft pulp and lignin model compounds. Appl Environ Microbiol 63:4627–4632

    CAS  Google Scholar 

  66. Li K, Helm RF, Eriksson KL (1998) Mechanistic studies of the oxidation of a non-phenolic lignin model compound by the laccase/1-hydroxybenzotriazole redox system. Biotechnol Appl Biochem 27:239–243

    CAS  Google Scholar 

  67. Matsumura E, Yamamotoa E, Numataa A, Kawanoa T, Shin T, Murao S (1986) Structures of the laccase-catalyzed oxidation products of hydroxybenzoic acids in the presence of ABTS [2,2′-azino-di-(3-ethylbenzothiazoline-6-sulfonic acid)]. Agric Biol Chem 50:1355–1357

    Article  CAS  Google Scholar 

  68. Rittstieg K, Suurnakki A, Suortti T, Kruus K, Guebitz G, Buchert J (2002) Investigations on the laccase-catalyzed polymerization of lignin model compounds using size-exclusion HPLC. Enzyme Microb Technol 31:403–410

    Article  CAS  Google Scholar 

  69. Palonen H, Viikari L (2004) Role of oxidative enzymatic treatments on enzymatic hydrolysis of softwood. Biotechnol Bioeng 86:550–557

    Article  CAS  Google Scholar 

  70. Eggert C, Temp U, Dean JFDD, Eriksson K-EEL (1996) A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett 391:144–148

    Article  CAS  Google Scholar 

  71. Canas AI, Camarero S (2010) Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv 28:694–705

    Article  CAS  Google Scholar 

  72. Kawai S, Umezawa T, Higuchi T (1989) Oxidation of methoxylated benzyl alcohols by laccase of Coriolus versicolor in the presence of syringaldehyde. Wood Res 76:10–16

    CAS  Google Scholar 

  73. D’Acunzo F, Galli C (2003) First evidence of catalytic mediation by phenolic compounds in the laccase-induced oxidation of lignin models. Eur J Biochem 270:3634–3640

    Article  CAS  Google Scholar 

  74. Calcaterra A, Galli C, Gentili P (2008) Phenolic compounds as likely natural mediators of laccase: a mechanistic assessment. J Mol Catal B Enzym 51:118–120

    Article  CAS  Google Scholar 

  75. D’Acunzo F, Galli C, Gentili P, Sergi F (2006) Mechanistic and steric issues in the oxidation of phenolic and non-phenolic compounds by laccase or laccase-mediator systems. The case of bifunctional substrates. New J Chem 30:583

  76. Martorana A, Sorace L, Boer H, Vazquez-Duhalt R, Basosi R, Baratto MC (2013) A spectroscopic characterization of a phenolic natural mediator in the laccase biocatalytic reaction. J Mol Catal B Enzym 97:203–208

    Article  CAS  Google Scholar 

  77. Camarero S, Ibarra D, Martinez MJ, Martinez AT (2005) Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl Environ Microbiol 71:1775–1784

    Article  CAS  Google Scholar 

  78. Cho NS, Shin W, Jeong SW, Leonowicz A (2004) Degradation of lignosulfonate by fungal laccase with low molecular mediators. Bull Korean Chem Soc 25:1551–1554

    Article  CAS  Google Scholar 

  79. Nousiainen P, Maijala P, Hatakka A, Martínez AT, Sipilä J (2009) Syringyl-type simple plant phenolics as mediating oxidants in laccase catalyzed degradation of lignocellulosic materials: model compound studies. Holzforschung 63:699–704

    Article  CAS  Google Scholar 

  80. Rico A, Rencoret J, del Rio J, Martinez A, Gutierrez A (2014) Pretreatment with laccase and a phenolic mediator degrades lignin and enhances saccharification of Eucalyptus feedstock. Biotechnol Biofuels 7:6

    Article  CAS  Google Scholar 

  81. Du X, Li J, Gellerstedt G, Rencoret J, Del Rio JC, Martinez AT, Gutierrez A (2013) Understanding pulp delignification by laccase-mediator systems through isolation and characterization of lignin-carbohydrate complexes. Biomacromolecules 14:3073–3080

    Article  CAS  Google Scholar 

  82. Moilanen U, Kellock M, Várnai A, Andberg M, Viikari L (2014) Mechanisms of laccase-mediator treatments improving the enzymatic hydrolysis of pre-treated spruce. Biotechnol Biofuels 7:3

    Article  CAS  Google Scholar 

  83. Fillat A, Gallardo O, Vidal T, Pastor FIJ, Díaz P, Roncero MB (2012) Enzymatic grafting of natural phenols to flax fibres: development of antimicrobial properties. Carbohydr Polym 87:146–152

    Article  CAS  Google Scholar 

  84. Vila C, Barneto AG, Fillat A, Vidal T, Ariza J (2011) Use of thermogravimetric analysis to monitor the effects of natural laccase mediators on flax pulp. Bioresour Technol 102:6554–6561

    Article  CAS  Google Scholar 

  85. Torres-Duarte C, Roman R, Tinoco R, Vazquez-Duhalt R (2009) Halogenated pesticide transformation by a laccase-mediator system. Chemosphere 77:687–692

    Article  CAS  Google Scholar 

  86. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  CAS  Google Scholar 

  87. Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38:522–550

    Article  CAS  Google Scholar 

  88. Zhu JY, Pan XJ (2010) Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour Technol 101:4992–5002

    Article  CAS  Google Scholar 

  89. Viell J, Harwardt A, Seiler J, Marquardt W (2013) Is biomass fractionation by Organosolv-like processes economically viable? A conceptual design study. Bioresour Technol 150:89–97

    Article  CAS  Google Scholar 

  90. Schmiedl D, Endisch S, Pindel E, Rückert D, Reinhardt S, Unkelbach U, Schweppe R (2012) Base catalyzed degradation of lignin for the generation of oxy-aromatic compounds—possibilities and challenges. Erdöl Erdgas Kohl 10:357–363

    Google Scholar 

  91. Gutiérrez A, Rencoret J, Cadena EM, Rico A, Barth D, del Río JC, Martínez ÁT (2012) Demonstration of laccase-based removal of lignin from wood and non-wood plant feedstocks. Bioresour Technol 119:114–122

    Article  CAS  Google Scholar 

  92. Virk AP, Sharma P, Capalash N (2012) Use of laccase in pulp and paper industry. Biotechnol Prog 28:21–32

    Article  CAS  Google Scholar 

  93. Widsten P, Kandelbauer A (2008) Laccase applications in the forest products industry: a review. Enzyme Microb Technol 42:293–307

    Article  CAS  Google Scholar 

  94. Qiu W, Chen H (2012) Enhanced the enzymatic hydrolysis efficiency of wheat straw after combined steam explosion and laccase pretreatment. Bioresour Technol 118:8–12

    Article  CAS  Google Scholar 

  95. Chakar FS, Ragauskas AJ (2004) Biobleaching chemistry of laccase-mediator systems on high-lignin-content kraft pulps. Can J Chem 82:344–352

    Article  CAS  Google Scholar 

  96. Chen Q, Marshall MN, Geib SM, Tien M, Richard TL (2012) Effects of laccase on lignin depolymerization and enzymatic hydrolysis of ensiled corn stover. Bioresour Technol 117:186–192

    Article  CAS  Google Scholar 

  97. Martin-Sampedro R, Capanema EA, Hoeger I, Villar JC, Rojas OJ (2011) Lignin changes after steam explosion and laccase-mediator treatment of eucalyptus wood chips. J Agric Food Chem 59:8761–8769

    Article  CAS  Google Scholar 

  98. Pan X (2008) Role of functional groups in lignin inhibition of enzymatic hydrolysis of cellulose to glucose. J Biobased Mater Bioenergy 2:25–32

    Article  Google Scholar 

  99. Moilanen U, Kellock M, Galkin S, Viikari L (2011) The laccase-catalyzed modification of lignin for enzymatic hydrolysis. Enzyme Microb Technol 49:492–498

    Article  CAS  Google Scholar 

  100. Nakagame S, Chandra RP, Saddler JN (2010) The effect of isolated lignins, obtained from a range of pretreated lignocellulosic substrates, on enzymatic hydrolysis. Biotechnol Bioeng 105:871–879

    CAS  Google Scholar 

  101. Jetten JM, Van Den Dool R, Van Hartingsveldt W, Besemer AC (2000) Process for selective oxidation of cellulose. Patent WO2000050463 A1

  102. Johanna B, Kristiina K, Liisa V (1999) Method for modification of cellulose. Patent WO1999023117

  103. Besemer AC, De NAEJ (1995) Method for oxidising carbohydrates. Patent WO1995007303 A1

  104. Chernoglazov V, Ermolova O, Klyosov A (1988) Adsorption of high-purity endo-1, 4-β-glucanases from Trichoderma reesei on components of lignocellulosic materials: cellulose, lignin, and xylan. Enzyme Microb Technol 10:503–507

    Article  CAS  Google Scholar 

  105. Berlin A, Balakshin M, Gilkes N (2006) Inhibition of cellulase, xylanase and β-glucosidase activities by softwood lignin preparations. J Biotechnol 125:198–209

    Article  CAS  Google Scholar 

  106. Converse AO, Ooshima H, Burns DS (1990) Kinetics of enzymatic hydrolysis of lignocellulosic materials based on surface area of cellulose accessible to enzyme and enzyme adsorption on lignin and cellulose. Appl Biochem Biotechnol 24–25:67–73

    Article  Google Scholar 

  107. Rahikainen JL, Martin-Sampedro R, Heikkinen H, Rovio S, Marjamaa K, Tamminen T, Rojas OJ, Kruus K (2013) Inhibitory effect of lignin during cellulose bioconversion: the effect of lignin chemistry on non-productive enzyme adsorption. Bioresour Technol 133:270–278

    Article  CAS  Google Scholar 

  108. Palonen H, Tjerneld F, Zacchi G, Tenkanen M (2004) Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. J Biotechnol 107:65–72

    Article  CAS  Google Scholar 

  109. Heap L, Green A, Brown D, van Dongen B, Turner N (2014) Role of laccase as an enzymatic pretreatment method to improve lignocellulosic saccharification. Catal Sci Technol 4:2251–2259

    Article  CAS  Google Scholar 

  110. Fillat U, Roncero MB (2009) Biobleaching of high quality pulps with laccase mediator system: influence of treatment time and oxygen supply. Biochem Eng J 44:193–198

    Article  CAS  Google Scholar 

  111. Balakshin M, Capanema E, Chen C-L, Gratzl J, Kirkman A, Gracz H (2001) Biobleaching of pulp with dioxygen in the laccase-mediator system—reaction mechanisms for degradation of residual lignin. J Mol Catal B Enzym 13:1–16

    Article  CAS  Google Scholar 

  112. Gierer J, Imsgard F, Norén I, Stilkerieg B, Christensen A, Schroll G (1977) Studies on the degradation of phenolic lignin units of the beta-aryl ether type with oxygen in alkaline media. Acta Chem Scand B 31:561–572

    Article  Google Scholar 

  113. Kirk T, Farrell R (1987) Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505

  114. Law K (1950) Phenol oxidases in some wood-rotting fungi. Ann Bot 14:69–78

    CAS  Google Scholar 

  115. Fårhraeus G (1952) Formation of laccase by Polyporus versicolor in different culture media. Physiol Plant 5:284–291

    Article  Google Scholar 

  116. Leonowicz A, Szklarz G, Wojtaś-Wasilewska M (1985) The effect of fungal laccase on fractionated lignosulphonates (Peritan Na). Phytochemistry 24:393–396

    Article  CAS  Google Scholar 

  117. Ander P, Eriksson KE (1976) The importance of phenol oxidase activity in lignin degradation by the white-rot fungus Sporotrichum pulverulentum. Arch Microbiol 109:1–8

    Article  CAS  Google Scholar 

  118. Eggert C, Temp U, Eriksson K-EL (1997) Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus. FEBS Lett 407:89–92

    Article  CAS  Google Scholar 

  119. Haars A, Hüttermann A (1980) Function of laccase in the white-rot fungus Fomes annosus. Arch Microbiol 237:233–237

    Article  Google Scholar 

  120. Kirk T, Harkin J, Cowling E (1968) Degradation of the lignin model compound springgylglycol-β-guaiacyl ether by Polyporus versicolor and Stereum frustulatum. Biochim Biophys Acta 165:145–163

    Article  CAS  Google Scholar 

  121. Van Vliet W (1954) The enzymatic oxidation of lignin. Biochim Biophys Acta 15:211–216

    Article  Google Scholar 

  122. Gierer J, Opara A (1973) Studies on the enzymatic degradation of lignin. The action of peroxidase and laccase on monomeric and dimeric model compounds. Acta Chem Scand 27:2909–2922

  123. Kirk TK (1971) Effects of microorganisms on lignin. Annu Rev Phytopathol 9:185–210

    Article  CAS  Google Scholar 

  124. Srebotnik E, Hammel KE (2000) Degradation of nonphenolic lignin by the laccase/1-hydroxybenzotriazole system. J Biotechnol 81:179–188

    Article  CAS  Google Scholar 

  125. Li KC, Xu F, Eriksson KEL (1999) Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound. Appl Environ Microbiol 65:2654–2660

    CAS  Google Scholar 

  126. Kawai S, Nakagawa M, Ohashi H (1999) Aromatic ring cleavage of a non-phenolic β-O-4 lignin model dimer by laccase of Trametes versicolor in the presence of 1-hydroxybenzotriazole. FEBS Lett 446:355–358

    Article  CAS  Google Scholar 

  127. Rittstieg K, Suurnäkki A, Suortti T, Kruus K, Guebitz GM, Buchert J (2003) Polymerization of guaiacol and a phenolic β-O-4-substructure by Trametes hirsuta laccase in the presence of ABTS. Biotechnol Prog 19:1505–1509

    Article  CAS  Google Scholar 

  128. Kawai S, Asukai M, Ohya N, Okita K, Ito T, Ohashi H (1999) Degradation of a non-phenolic β-O-4 substructure and of polymeric lignin model compounds by laccase of Coriolus versicolor in the presence of 1-hydroxybenzotriazole. FEMS Microbiol Lett 170:51–57

    CAS  Google Scholar 

  129. Castro A, Evtuguin D, Xavier A (2003) Degradation of biphenyl lignin model compounds by laccase of Trametes versicolor in the presence of 1-hydroxybenzotriazole and heteropolyanion. J Mol Catal B Enzym 22:13–20

    Article  CAS  Google Scholar 

  130. Azarpira A, Ralph J, Lu F (2013) Catalytic alkaline oxidation of lignin and its model compounds: a pathway to aromatic biochemicals. BioEnergy Res 7:78–86

    Article  CAS  Google Scholar 

  131. Xu C, Arancon RAD, Labidi J, Luque R (2014) Lignin depolymerisation strategies: towards valuable chemicals and fuels. Chem Soc Rev 43:7485–7500

    Article  CAS  Google Scholar 

  132. West MA, Hickson AC, Mattinen ML, Lloyd-Jones G (2014) Evaluating lignins as enzyme substrates: insights and methodological recommendations from a study of laccase-catalyzed lignin polymerization. Bioresources 9:2782–2796

    Article  CAS  Google Scholar 

  133. Bourbonnais R, Paice MG, Reid ID, Lanthier P, Yaguchi M (1995) Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization. Appl Environ Microbiol 61:1876–1880

    CAS  Google Scholar 

  134. Potthast A, Rosenau T, Koch H, Fischer K (1999) The reaction of phenolic model compounds in the laccase-mediator system (LMS) investigations by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Holzforschung 53:175–180

    Article  CAS  Google Scholar 

  135. Hernández Fernaud JRR, Carnicero A, Perestelo F, Hernández Cutuli M, Arias E, Falcón MA (2006) Upgrading of an industrial lignin by using laccase produced by Fusarium proliferatum and different laccase-mediator systems. Enzyme Microb Technol 38:40–48

    Article  CAS  Google Scholar 

  136. Shleev S, Persson P, Shumakovich G, Mazhugo Y, Yaropolov A, Ruzgas T, Gorton L (2006) Interaction of fungal laccases and laccase-mediator systems with lignin. Enzyme Microb Technol 39:841–847

    Article  CAS  Google Scholar 

  137. Munk L, Sitarz A, Kalyani D (2015) Can laccases catalyze bond cleavage in lignin? Biotechnol Adv. doi:10.1016/j.biotechadv.2014.12.008

    Google Scholar 

  138. Mita N, Tawaki S, Uyama H, Kobayashi S (2003) Laccase-catalyzed oxidative polymerization of phenols. Macromol Biosci 3:253–257

    Article  CAS  Google Scholar 

  139. Aktas N, Tanyolaç A (2003) Kinetics of laccase-catalyzed oxidative polymerization of catechol. J Mol Catal B Enzym 22:61–69

    Article  CAS  Google Scholar 

  140. Ikeda R, Sugihara J, Uyama H, Kobayashi S (1996) Enzymatic oxidative polymerization of 2,6-dimethylphenol. Macromolecules 29:8702–8705

    Article  CAS  Google Scholar 

  141. Ikeda R, Uyama H, Kobayashi S (1996) Novel synthetic pathway to a poly(phenylene oxide). Laccase-catalyzed oxidative polymerization of syringic acid. Macromolecules 29:3053–3054

    Article  CAS  Google Scholar 

  142. Sun X, Bai R, Zhang Y, Wang Q, Fan X (2013) Laccase-catalyzed oxidative polymerization of phenolic compounds. Appl Biochem Biotechnol 171:1673–1680

    Article  CAS  Google Scholar 

  143. Youn H, Hah Y, Kang S (1995) Role of laccase in lignin degradation by white-rot fungi. FEMS Microbiol Lett 132:183–188

  144. Majumdar S, Lukk T, Solbiati J, Bauer S (2014) The roles of small laccases from Streptomyces in lignin degradation. Biochemistry 53:4047–4058

    Article  CAS  Google Scholar 

  145. Arca-Ramos A, Eibes G, Moreira M (2012) Surfactant-assisted two phase partitioning bioreactors for laccase-catalyzed degradation of anthracene. Process Biochem 47:1115–1121

    Article  CAS  Google Scholar 

  146. Arca-Ramos A, Eibes G, Moreira MT (2014) Vegetable oils as NAPLs in two phase partitioning bioreactors for the degradation of anthracene by laccase. Chem Eng J 240:281–289

    Article  CAS  Google Scholar 

  147. Mustafa R, Muniglia L, Rovel B, Girardin M (2005) Phenolic colorants obtained by enzymatic synthesis using a fungal laccase in a hydro-organic biphasic system. Food Res Int 38:995–1000

    Article  CAS  Google Scholar 

  148. Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376

    Article  CAS  Google Scholar 

  149. Zhou G-P, Zhang Y, Huang X-R, Shi C-H, Liu W-F, Li Y-Z, Qu Y-B, Gao P-J (2008) Catalytic activities of fungal oxidases in hydrophobic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate-based microemulsion. Colloids Surf B Biointerfaces 66:146–149

    Article  CAS  Google Scholar 

  150. Xue L, Qiu H, Li Y, Lu L, Huang X, Qu Y (2011) A novel water-in-ionic liquid microemulsion and its interfacial effect on the activity of laccase. Colloids Surf B Biointerfaces 82:432–437

    Article  CAS  Google Scholar 

  151. Alberti BN, Klibanov AM (1982) Preparative production of hydroquinone from benzoquinone catalysed by immobilized d-glucose oxidase. Enzyme Microb Technol 4:47–49

    Article  CAS  Google Scholar 

  152. Green T (1977) Significance of glucose oxidase in lignin degradation. Nature 268:78–80

    Article  CAS  Google Scholar 

  153. Szklarz G, Leonowicz A (1986) Cooperation between fungal laccase and glucose oxidase in the degradation of lignin derivatives. Phytochemistry 25:2537–2539

    Article  CAS  Google Scholar 

  154. Leonowicz A, Rogalski J, Jaszek M, Luterek J, Wojtas-Wasilewska M, Malarczyk E, Ginalska G, Fink-Boots M, Cho N-S (1999) Cooperation of fungal laccase and glucose 1-oxidase in transformation of Björkman lignin and some phenolic compounds. Holzforschung 53:376–380

    Article  CAS  Google Scholar 

  155. Marzullo L, Cannio R, Giardina P (1995) Veratryl alcohol oxidase from Pleurotus ostreatus participates in lignin biodegradation and prevents polymerization of laccase-oxidized substrates. J Biol Chem 270:3823–3827

    Article  CAS  Google Scholar 

  156. Westermark U, Eriksson K (1974) Cellobiose: quinone oxidoreductase, a new wood-degrading enzyme from white-rot fungi. Scand B Acta Chem 28:209–214

    Article  CAS  Google Scholar 

  157. Ander P, Mishra C, Farrell RL, Eriksson K-EL (1990) Redox reactions in lignin degradation: interactions between laccase, different peroxidases and cellobiose: quinone oxidoreductase. J Biotechnol 13:189–198

    Article  CAS  Google Scholar 

  158. Eriksson K, Habu N, Samejima M (1993) Recent advances in fungal cellobiose oxidoreductases. Enzyme Microb Technol 15:1002–1008

    Article  CAS  Google Scholar 

  159. Henriksson G, Johansson G, Pettersson G (2000) A critical review of cellobiose dehydrogenases. J Biotechnol 78:93–113

    Article  CAS  Google Scholar 

  160. Picart P, Müller C, Mottweiler J, Wiermann L, Bol C, Domingues de Maria P, Schallmey A (2014) From gene towards selective biomass valorization: bacterial β-etherases with catalytic activity on lignin-like polymers. CemSusChem 7:3164–3171

    Article  CAS  Google Scholar 

  161. Reiter J, Strittmatter H, Wiemann L, Schieder D, Sieber V (2013) Enzymatic cleavage of lignin β-O-4 aryl ether bonds via net internal hydrogen transfer. Green Chem 15:1373

    Article  CAS  Google Scholar 

  162. Lin S, Dence C (1992) Methods in lignin chemistry. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  163. Baumberger S, Abaecherli A, Fasching M, Gellerstedt G, Gosselink R, Hortling B, Li J, Saake B, de Jong E (2007) Molar mass determination of lignins by size-exclusion chromatography: towards standardisation of the method. Holzforschung 61:459–468

    Article  CAS  Google Scholar 

  164. Contreras S, Gaspar AR, Guerra A, Lucia LA, Argyropoulos DS (2008) Propensity of lignin to associate: light scattering photometry study with native lignins. Biomacromolecules 9:3362–3369

    Article  CAS  Google Scholar 

  165. Cathala B, Saake B, Faix O, Monties B (2003) Association behaviour of lignins and lignin model compounds studied by multidetector size-exclusion chromatography. J Chromatogr A 1020:229–239

    Article  CAS  Google Scholar 

  166. Guerra A, Gaspar AR, Contreras S, Lucia LA, Crestini C, Argyropoulos DS (2007) On the propensity of lignin to associate: a size exclusion chromatography study with lignin derivatives isolated from different plant species. Phytochemistry 68:2570–2583

    Article  CAS  Google Scholar 

  167. Connors WJ, Sarkanen S, McCarthy JL (1980) Gel chromatography and association complexes of lignin. Holzforschung 34:80–85

    Article  CAS  Google Scholar 

  168. Yuan T-Q, Sun S-N, Xu F, Sun R-C (2011) Characterization of lignin structures and lignin–carbohydrate complex (LCC) linkages by quantitative 13C and 2D HSQC NMR spectroscopy. J Agric Food Chem 59:10604–10614

    Article  CAS  Google Scholar 

  169. Sette M, Wechselberger R, Crestini C (2011) Elucidation of lignin structure by quantitative 2D NMR. Chem A Eur J 17:9529–9535

    Article  CAS  Google Scholar 

  170. Sette M, Lange H, Crestini C (2013) Quantitative HSQC analyses of lignin: a practical comparison. Comput Struct Biotechnol J 6:1–7

    Article  Google Scholar 

  171. Rencoret J, Marques G, Gutierrez A, Nieto L, Santos JI, Jimenez-Barbero J, Martinez AT, del Rio JC (2009) HSQC-NMR analysis of lignin in woody (Eucalyptus globulus and Picea abies) and non-woody (Agave sisalana) ball-milled plant materials at the gel state 10(th) EWLP, Stockholm, Sweden, August 25–28, 2008. Holzforschung 63:691–698

    Article  CAS  Google Scholar 

  172. Capanema EA, Balakshin MY, Kadla JF (2005) Quantitative characterization of a hardwood milled wood lignin by nuclear magnetic resonance spectroscopy. J Agric Food Chem 53:9639–9649

    Article  CAS  Google Scholar 

  173. Chandel AK, da Silva SS, Singh OV (2012) Detoxification of lignocellulose hydrolysates: biochemical and metabolic engineering toward white biotechnology. BioEnergy Res 6:388–401

    Article  CAS  Google Scholar 

  174. Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26

    Article  CAS  Google Scholar 

  175. Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M (2011) Deactivation of cellulases by phenols. Enzyme Microb Technol 48:54–60

    Article  CAS  Google Scholar 

  176. Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M (2010) Inhibition of cellulases by phenols. Enzyme Microb Technol 46:170–176

    Article  CAS  Google Scholar 

  177. Kim Y, Ximenes E, Mosier NS, Ladisch MR (2011) Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Enzyme Microb Technol 48:408–415

    Article  CAS  Google Scholar 

  178. Tejirian A, Xu F (2011) Inhibition of enzymatic cellulolysis by phenolic compounds. Enzyme Microb Technol 48:239–247

    Article  CAS  Google Scholar 

  179. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33

    Article  CAS  Google Scholar 

  180. Heipieper HJ, Weber FJ, Sikkema J, Keweloh H, de Bont JA (1994) Mechanisms of resistance of whole cells to toxic organic solvents. Trends Biotechnol 12:409–415

    Article  CAS  Google Scholar 

  181. Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93:1–10

    Article  CAS  Google Scholar 

  182. Olsson L, Hahn-Hägerdal B (1996) Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb Technol 18:312–331

    Article  CAS  Google Scholar 

  183. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 74:17–24

    Article  CAS  Google Scholar 

  184. Jönsson L, Palmqvist E (1998) Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor. Appl Microbiol 49:691–697

    Google Scholar 

  185. Jurado M, Prieto A, Martínez-Alcalá A, Martínez AT, Martínez MJ (2009) Laccase detoxification of steam-exploded wheat straw for second generation bioethanol. Bioresour Technol 100:6378–6384

    Article  CAS  Google Scholar 

  186. Larsson S, Reimann A (1999) Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl Biochem Biotechnol 77:91–103

    Article  Google Scholar 

  187. Martín C, Galbe M (2002) Ethanol production from enzymatic hydrolysates of sugarcane bagasse using recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme Microb Technol 31:274–282

    Article  Google Scholar 

  188. Chandel AK, Kapoor RK, Singh A, Kuhad RC (2007) Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour Technol 98:1947–1950

    Article  CAS  Google Scholar 

  189. Moreno A, Ibarra D (2012) Different laccase detoxification strategies for ethanol production from lignocellulosic biomass by the thermotolerant yeast Kluyveromyces marxianus CECT. Bioresour Technol 106:101–109

    Article  CAS  Google Scholar 

  190. Moreno AD, Tomás-Pejó E, Ibarra D, Ballesteros M, Olsson L (2013) In situ laccase treatment enhances the fermentability of steam-exploded wheat straw in SSCF processes at high dry matter consistencies. Bioresour Technol 143:337–343

    Article  CAS  Google Scholar 

  191. Guo F, Shi W, Sun W, Li X, Wang F, Zhao J, Qu Y (2014) Differences in the adsorption of enzymes onto lignins from diverse types of lignocellulosic biomass and the underlying mechanism. Biotechnol Biofuels 7:38

    Article  CAS  Google Scholar 

  192. Lee K-M, Kalyani D, Tiwari MK, Kim T-S, Dhiman SS, Lee J-K, Kim I-W (2012) Enhanced enzymatic hydrolysis of rice straw by removal of phenolic compounds using a novel laccase from yeast Yarrowia lipolytica. Bioresour Technol 123:636–645

    Article  CAS  Google Scholar 

  193. Ludwig D, Amann M, Hirth T, Rupp S, Zibek S (2013) Development and optimization of single and combined detoxification processes to improve the fermentability of lignocellulose hydrolyzates. Bioresour Technol 133:455–461

    Article  CAS  Google Scholar 

  194. Jäger G, Büchs J (2012) Biocatalytic conversion of lignocellulose to platform chemicals. Biotechnol J. doi:10.1002/biot.201200033

    Google Scholar 

  195. Klement T, Büchs J (2012) Itaconic acid—a biotechnological process in change. Bioresour Technol 135:422–431

    Article  CAS  Google Scholar 

  196. Palmqvist E, Hahn-Hägerdal B, Galbe M, Zacchi G (1996) The effect of water-soluble inhibitors from steam-pretreated willow on enzymatic hydrolysis and ethanol fermentation. Enzyme Microb Technol 19:470–476

    Article  CAS  Google Scholar 

  197. Kudanga T, Le Roes-Hill M (2014) Laccase applications in biofuels production: current status and future prospects. Appl Microbiol Biotechnol 98:6525–6542

    Article  CAS  Google Scholar 

  198. Morozova O, Shumakovich G, Shleev S, Yaropolov Y (2007) Laccase-mediator systems and their applications: a review. Appl Biochem Microbiol 43:523–535

    Article  CAS  Google Scholar 

  199. Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24:219–226

    Article  CAS  Google Scholar 

  200. Martín-Sampedro R, Eugenio ME, Carbajo JM, Villar JC (2011) Combination of steam explosion and laccase-mediator treatments prior to Eucalyptus globulus kraft pulping. Bioresour Technol 102:7183–7189

    Article  CAS  Google Scholar 

  201. Kuila A, Mukhopadhyay M, Tuli DK, Banerjee R (2011) Accessibility of enzymatically delignified bambusa bambos for efficient hydrolysis at minimum cellulase loading: an optimization study. Enzyme Res 2011:1–8

    Article  CAS  Google Scholar 

  202. Nugroho Prasetyo E, Kudanga T, Østergaard L, Rencoret J, Gutiérrez A, del Río JC, Ignacio Santos J, Nieto L, Jiménez-Barbero J, Martínez AT, Li J, Gellerstedt G, Lepifre S, Silva C, Kim SY, Cavaco-Paulo A, Seljebakken Klausen B, Lutnaes BF, Nyanhongo GS, Guebitz GM (2010) Polymerization of lignosulfonates by the laccase-HBT (1-hydroxybenzotriazole) system improves dispersibility. Bioresour Technol 101:5054–5062

    Article  CAS  Google Scholar 

  203. Crestini C, Melone F, Saladino R (2011) Novel multienzyme oxidative biocatalyst for lignin bioprocessing. Bioorg Med Chem 19:5071–5078

    Article  CAS  Google Scholar 

  204. van de Pas D, Hickson A, Donaldson L (2011) Characterization of fractionated lignins polymerized by fungal laccases. BioResources 6:1105–1121

    Google Scholar 

  205. Kalyani D, Dhiman SS, Kim H, Jeya M, Kim I-W, Lee J-K (2012) Characterization of a novel laccase from the isolated Coltricia perennis and its application to detoxification of biomass. Process Biochem 47:671–678

    Article  CAS  Google Scholar 

  206. Kolb M, Sieber V, Amann M, Faulstich M, Schieder D (2012) Removal of monomer delignification products by laccase from Trametes versicolor. Bioresour Technol 104:298–304

    Article  CAS  Google Scholar 

  207. Moreno AD, Ibarra D, Ballesteros I, González A, Ballesteros M (2013) Comparing cell viability and ethanol fermentation of the thermotolerant yeast Kluyveromyces marxianus and Saccharomyces cerevisiae on steam-exploded biomass treated with laccase. Bioresour Technol 135:239–245

    Article  CAS  Google Scholar 

  208. Van Parijs FRD, Morreel K, Ralph J, Boerjan W, Merks RMH (2010) Modeling lignin polymerization. I. Simulation model of dehydrogenation polymers. Plant Physiol 153:1332–1344

    Article  CAS  Google Scholar 

  209. Kawai S, Umezawa T, Higuchi T (1988) Degradation mechanisms of phenolic β-1 lignin substructure model compounds by laccase of Coriolus versicolor. Arch Biochem Biophys 262:99–110

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antje C. Spiess.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roth, S., Spiess, A.C. Laccases for biorefinery applications: a critical review on challenges and perspectives. Bioprocess Biosyst Eng 38, 2285–2313 (2015). https://doi.org/10.1007/s00449-015-1475-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1475-7

Keywords

Navigation