Skip to main content
Log in

Whole-cell bioconversion of naringenin to high added value hydroxylated compounds using Yarrowia lipolytica 2.2ab in surface and liquid cultures

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The bioconversion process of bioactive naringenin by whole-cells of Yarrowia lipolytica 2.2ab for the production of increased value-added compounds is successfully achieved in surface and liquid cultures. This approach is an alternative to the commercial production of these bioactive compounds from vegetable sources, which are limited due to their low concentrations and the complexity of the purification processes. The experimentation rendered seven value-added compounds in both surface and liquid bioconversion cultures. Some of the compounds produced have not been previously reported as products from the bioconversion processes, such as the case of ampelopsin. Biosynthetic pathways were suggested for the naringenin bioconversion using whole-cells of Y. lipolytica 2.2ab. Finally, the extracts obtained from the naringenin bioconversion in liquid cultures showed higher percentage of inhibition of DPPH· and ABTS· radicals up to 32.88 and 2.08 times, respectively, compared to commercial naringenin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Álvarez E, Cambeiro O (2003) Actividad biológica de los flavonoides (I). Acción frente al cáncer Offarm 22:130–140

    Google Scholar 

  2. Karabin M, Hudcova T, Jelinek L, Dostalek P (2014) Biotransformations and biological activities of hop flavonoids. Biotechnol Adv 33:1063–1090. https://doi.org/10.1016/j.biotechadv.2015.02.009

    Article  CAS  Google Scholar 

  3. Ribeiro IA, Rocha J, Sepodes B, Mota-Filipe H, Ribeiro MH (2008) Effect of naringin enzymatic hydrolysis towards naringenin on the anti-inflammatory activity of both compounds. J Mol Catal B Enzym 52–53:13–18. https://doi.org/10.1016/j.molcatb.2007.10.011

    Article  CAS  Google Scholar 

  4. Olsen KM, Hehn A, Jugdé H, Slimestad R, Larbat R, Bourgaud F, Lillo C (2010) Identification and characterisation of CYP75A31, a new flavonoid 3’5’-hydroxylase, isolated from Solanum lycopersicum. BMC Plant Biol 10:1–12. https://doi.org/10.1186/1471-2229-10-21

    Article  CAS  Google Scholar 

  5. Markovic JD (2007) Flavonoids, the role and the importance in modern investigations. Acta Agric Serb XII:25–36

    Google Scholar 

  6. Madej A, Popłoński J, Huszcza E (2014) Improved oxidation of naringenin to carthamidin and isocarthamidin by Rhodotorula marina. Appl Biochem Biotechnol 173:67–73. https://doi.org/10.1007/s12010-014-0787-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Das S, Rosazza JPN (2006) Microbial and enzymatic transformations of flavonoids. J Nat Prodvol 69:499–508. https://doi.org/10.1021/np0504659

    Article  CAS  Google Scholar 

  8. Zhang J (2007) Flavonoids in grapefruit and commercial grapefruit juices: concentration, distribution, and potential health benefits. Proc Fla State Hort Soc 120:288–294

    Google Scholar 

  9. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747. https://doi.org/10.1093/ajcn/79.5.727

    Article  CAS  PubMed  Google Scholar 

  10. Tong X, Smith KA, Pelling JC (2012) Apigenin, a chemopreventive bioflavonoid, induces AMP-activated protein kinase activation in human keratinocytes. Mol Carcinog 51:268–279. https://doi.org/10.1002/mc.20793

    Article  CAS  PubMed  Google Scholar 

  11. López-Lázaro M (2009) Distribution and biological activities of the flavonoid luteolin. Mini Rev Med Chem 9:31–59. https://doi.org/10.2174/138955709787001712

    Article  PubMed  Google Scholar 

  12. Marín L, Gutiérrez-del-Río I, Entrialgo-Cadierno R, Villar CJ, Lombó F (2018) De novo biosynthesis of myricetin, kaempferol and quercetin in Streptomyces albus and Streptomyces coelicolor. PLoS ONE 13:1–16. https://doi.org/10.1371/journal.pone.0207278

    Article  CAS  Google Scholar 

  13. Pinto JT, Alvarenga LF, Pinto de Oliveira D, Toledo de Oliveira T, Schwan RF, Dias DR, de Queiroz JH (2017) Elaboration and characterization of Japanese Raisin Tree (Hovenia dulcis Thumb.) pseudofruits fermented alcoholic beverage. Food Sci Technol 37:101–108. https://doi.org/10.1590/1678-457x.25616

    Article  Google Scholar 

  14. Cheng P, Gui C, Huang J, Xia Y, Fang Y, Da G, Zhang X (2017) Molecular mechanisms of ampelopsin from Ampelopsis megalophylla induces apoptosis in HeLa cells. Oncol Lett 14:2691–2698. https://doi.org/10.3892/ol.2017.6520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kou X, Chen N (2012) Pharmacological potential of ampelopsin in Rattan tea. Food Sci Hum Wellness 1:14–18. https://doi.org/10.1016/j.fshw.2012.08.001

    Article  Google Scholar 

  16. Kou X, Fan J, Chen N (2017) Potential molecular targets of ampelopsin in prevention and treatment of cancers. Anticancer Agents Med Chem 17:1610–1616. https://doi.org/10.2174/1871521409666170412130529

    Article  CAS  PubMed  Google Scholar 

  17. Jiménez-Atiénzar M, Escribano J, Cabanes J, Gandía-Herrero F, García-Carmona F (2005) Oxidation of the flavonoid eriodictyol by tyrosinase. Plant Physiol Biochem 43:866–873. https://doi.org/10.1016/j.plaphy.2005.07.010

    Article  CAS  PubMed  Google Scholar 

  18. Minato KI, Miyake Y, Fukumoto S, Yamamoto K, Kato Y, Shimomura Y, Osawa T (2003) Lemon flavonoid, eriocitrin, suppresses exercise-induced oxidative damage in rat liver. Life Sci 72(14):1609–1616. https://doi.org/10.1016/S0024-3205(02)02443-8

    Article  CAS  PubMed  Google Scholar 

  19. Xu J, Yang L, Zhao SJ, Wang ZT, Hu ZB (2012) An efficient way from naringenin to carthamidine and isocarthamidine by Aspergillus niger. World J Microbiol Biotechnol 28:1803–1806. https://doi.org/10.1007/s11274-011-0934-9

    Article  CAS  PubMed  Google Scholar 

  20. Nagy TO, Ledolter K, Solar S (2008) Oxidation of naringenin by gamma-radiation. Radiat Phys Chem 77:728–733. https://doi.org/10.1016/j.radphyschem.2007.10.007

    Article  CAS  Google Scholar 

  21. Kasai N, Ikushiro S-i, Hirosue S, Arisawa A, Ichinose H, Wariishi H, Ohta M, Sakaki T (2009) Enzymatic properties of cytochrome P450 catalyzing 3´-hydroxylation of naringenin from the white-rot fungus Phanerochaete chrysosporium. Biochem Biophys Res Commun 387:103–108. https://doi.org/10.1016/j.bbrc.2009.06.134

    Article  CAS  PubMed  Google Scholar 

  22. Ribeiro IA, Ribeiro MHL (2008) Naringin and naringenin determination and control in grapefruit juice by a validated HPLC method. Food Control 19:432–438. https://doi.org/10.1016/j.foodcont.2007.05.007

    Article  CAS  Google Scholar 

  23. Prasetyo EN, Nyanhongo GS, Guebitz GM (2011) Enzymatically enriching naringenin with hydroxylated and/or methoxylated phenolic compounds. Process Biochem 46:1019–1024. https://doi.org/10.1016/j.procbio.2010.12.017

    Article  CAS  Google Scholar 

  24. Crozier A, Jaganath IB, Clifford MN (2009) Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep 26:1001–1043. https://doi.org/10.1039/b802662a

    Article  CAS  PubMed  Google Scholar 

  25. Cao H, Chen X, Jassbi AR, Xiao J (2015) Microbial biotransformation of bioactive flavonoids. Biotechnol Adv 33:214–223. https://doi.org/10.1016/j.biotechadv.2014.10.012

    Article  CAS  PubMed  Google Scholar 

  26. Lee JH, Oh ET, Chun SC, Keum YS (2014) Biotransformation of isoflavones by Aspergillus niger and Cunninghamella elegans. J Korean Soc Appl Biol Chem 57:523–527. https://doi.org/10.1007/s13765-014-4145-6

    Article  CAS  Google Scholar 

  27. Velasco RB, Montenegro DLM, Vélez JFS, García CMP, Durango DLR (2009) Biotransformación de compuestos aromáticos sustituidos mediante hongos filamentosos fitopatógenos de los géneros botryodiplodia y colletotrichum. Rev Soc Quím Perú 75:94–111

    Google Scholar 

  28. Hirakawa K, Kobayashi S, Inoue T, Endoh-Yamagami S, Fukuda R, Ohta A (2009) Yas3p, an opi1 family transcription factor, regulates Cytochrome P450 expression in response to n-alkanes in Yarrowia lipolytica. J Biol Chem 284:7126–7137. https://doi.org/10.1074/jbc.M806864200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Holland HL, Weber HK (2000) Enzymatic hydroxylation reactions. Curr Opin Biotechnol 11:547–553. https://doi.org/10.1016/S0958-1669(00)00142-7

    Article  CAS  PubMed  Google Scholar 

  30. Chu LL, Pandey RP, Jung N, Jung HJ, Kim E-H, Sohng JK (2016) Hydroxylation of diverse flavonoids by CYP450 BM3 variants: biosynthesis of eriodictyol from naringenin in whole cells and its biological activities. Microb Cell Fact 15:1–15. https://doi.org/10.1186/s12934-016-0533-4

    Article  CAS  Google Scholar 

  31. Amor IL-B, Salem N, Guedon E, Engasser J-M, Chekir-Ghedrira L, Ghoul M (2010) Preliminary investigation of naringenin hydroxylation with recombinant E. coli expressing plant flavonoid hydroxylation gene. Nat Prod Commun 5:777–782

    PubMed  Google Scholar 

  32. Chang T-S, Lin M-Y, Lin H-J (2010) Identifying 8-hydroxynaringenin as a suicide substrate of mushroom tyrosinase. J Cosmet Sci 61:205–210. https://doi.org/10.1111/j.1468-2494.2010.00619_1.x

    Article  CAS  PubMed  Google Scholar 

  33. Coelho MAZ, Amaral PFF, Belo I (2010) Yarrowia lipolytica: an industrial workhorse. Appl Microbiol Microb Biotechnol 1:930–944

    Google Scholar 

  34. Palmerin-Carreño DM, Rutiaga-Quiñones OM, Verde Calvo JR, Prado-Barragan A, Huerta-Ochoa S (2015) Screening of microorganisms for bioconversion of (+)-valencene to (+)-nootkatone. LWT Food Sci Technol 64:788–793. https://doi.org/10.1016/j.lwt.2015.06.065

    Article  CAS  Google Scholar 

  35. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28:25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  CAS  Google Scholar 

  36. Kim DO, Chun OK, Kim YJ, Moon HY, Lee CY (2003) Quantification of polyphenolics and their antioxidant capacity in fresh plums. J Agric Food Chem 51:6509–6515. https://doi.org/10.1021/jf0343074

    Article  CAS  PubMed  Google Scholar 

  37. Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559. https://doi.org/10.1016/S0308-8146(98)00102-2

    Article  CAS  Google Scholar 

  38. Pérez-Nájera V, Lugo-Cervantes E, Gutiérrez-Lomelí M, Del-Toro-Sánchez C (2013) Extracción de compuestos fenólicos de la cáscara de lima (citrus limetta risso) y determinación de su actividad antioxidante. Rev Ciencias Biol La Salud XV:1665–1456. https://doi.org/10.18633/bt.v15i3.153

    Article  Google Scholar 

  39. Fajardo-Romero A, Arroyo-Rivera Á, Ramírez-Navas JS (2017) Extracción de flavonoides totales de la envoltura externa de cebolla roja (Allium cepa). UGCiencia 22:119–126. https://doi.org/10.18634/ugcj.22v.1i.599

    Article  Google Scholar 

  40. Marín L, Gutiérrez-del-Río I, Yagüe P, Manteca Á, Villar CJ, Lombó F (2017) De novo biosynthesis of apigenin, luteolin, and eriodictyol in the actinomycete Streptomyces albus and production improvement by feeding and spore conditioning. Front Microbiol 8:1–12. https://doi.org/10.3389/fmicb.2017.00921

    Article  Google Scholar 

  41. Park SR, Paik JH, Ahn MS, Park JW, Yoon YJ (2010) Biosynthesis of plant-specific flavones and flavonols in Streptomyces venezuelae. J Microbiol Biotechnol 20:1295–1299. https://doi.org/10.4014/jmb.1005.05038

    Article  CAS  PubMed  Google Scholar 

  42. Park SR, Ahn MS, Han AR, Park JW, Yoon YJ (2011) Enhanced flavonoid production in Streptomyces venezuelae via metabolic engineering. J Microbiol Biotechnol 21:1143–1146. https://doi.org/10.4014/jmb.1108.08012

    Article  CAS  PubMed  Google Scholar 

  43. Chung DM, Chung YC, Maeng PJ, Chun HK (2011) Regioselective deglycosylation of onion quercetin glucosides by Saccharomyces cerevisiae. Biotechnol Lett 33:783–786. https://doi.org/10.1007/s10529-010-0501-8

    Article  CAS  PubMed  Google Scholar 

  44. Zhu S, Wu J, Du G, Zhou J, Chen J (2003) Efficient synthesis of eriodictyol from l-tyrosine in escherichia coli. Appl Environ Microbiol 80:3072–3080. https://doi.org/10.1128/AEM.03986-13

    Article  CAS  Google Scholar 

  45. Trueba GP (2003) Los flavonoides: antioxidantes o prooxidantes: Rev Cuba. Investig Biomed 22:48–57

    Google Scholar 

  46. Leonard E, Yan Y, Koffas MAG (2006) Functional expression of a P450 flavonoid hydroxylase for the biosynthesis of plant-specific hydroxylated flavonols in Escherichia coli. Metab Eng 8:172–181. https://doi.org/10.1016/j.ymben.2005.11.001

    Article  CAS  PubMed  Google Scholar 

  47. Trantas E, Panopoulos N, Ververidis F (2009) Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae. Metab Eng 6:355–366. https://doi.org/10.1016/j.ymben.2009.07.004

    Article  CAS  Google Scholar 

  48. Semwal DK, Semwal RB, Combrinck S, Viljoen A (2016) Myricetin: a dietary molecule with diverse biological activities. Nutrients 8:1–31. https://doi.org/10.3390/nu8020090

    Article  CAS  Google Scholar 

  49. González-Mendoza D (2007) El complejo enzimático citocromo P450 en las plantas. Rev Int Contam Ambient 23:177–183

    Google Scholar 

  50. Araújo WL, Martins AO, Fernie AR, Tohge T (2014) “2-Oxoglutarate: linking TCA cycle function with amino acid, glucosinolate, flavonoid, alkaloid, and gibberellin biosynthesis. Front Plant Sci 5:1–6. https://doi.org/10.3389/fpls.2014.00552

    Article  Google Scholar 

  51. Bordewick S, Beier A, Balke K, Bornscheuer UT (2018) Baeyer-Villiger monooxygenases from Yarrowia lipolytica catalyze preferentially sulfoxidations. Enzyme Microb Technol 109:31–42. https://doi.org/10.1016/j.enzmictec.2017.09.008

    Article  CAS  PubMed  Google Scholar 

  52. Osadebe PO, Okoye FBC, Uzor PF, Nnamani NR, Adiele IE, Obiano NC (2012) Phytochemical analysis, hepatoprotective and antioxidant activity of Alchornea cordifolia methanol leaf extract on carbon tetrachloride-induced hepatic damage in rats. Asian Pac J Trop Med 5:289–293. https://doi.org/10.1016/S1995-7645(12)60041-8

    Article  PubMed  Google Scholar 

  53. Habtemariam S (1997) Flavonoids as inhibitors or enhancers of the cytotoxicity of tumor necrosis factor-α in L-929 tumor cells. J Nat Prod 60:775–778. https://doi.org/10.1021/np960581z

    Article  CAS  PubMed  Google Scholar 

  54. Dangrit D, Sompornpailin K (2018) Antioxidant activities of transgenic flower over-expressing FLS and TT8 involving in flavonoid biosynthesis. Appl Mech Mater 879:78–82. https://doi.org/10.4028/www.scientific.net/AMM.879.78

    Article  Google Scholar 

  55. Frejnagel S (2007) Comparison of polyphenolic composition of extracts from honeysuckle, chokeberries and green tea: a short report. Pol J Food Nutr Sci 57:83–86

    CAS  Google Scholar 

  56. Bondet V, Brand-Williams W, Berset C (1997) Kinetics and mechanisms of antioxidant activity using the DPPH. free radical method. LWT - Food Sci Technol 30:609–615. https://doi.org/10.1006/fstl.1997.0240

    Article  CAS  Google Scholar 

  57. Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic compounds. Free Radical Bio Med 20(7):933–956. https://doi.org/10.1016/0891-5849(95)02227-9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the National Council of Science and Technology (Conacyt México) for financial support for project SEP-CONACyT-2013-CO1-220867, and through a Christian Hernández Guzmán PhD Grant 302006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Huerta-Ochoa.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Guzmán, C., Prado-Barragán, A., Gimeno, M. et al. Whole-cell bioconversion of naringenin to high added value hydroxylated compounds using Yarrowia lipolytica 2.2ab in surface and liquid cultures. Bioprocess Biosyst Eng 43, 1219–1230 (2020). https://doi.org/10.1007/s00449-020-02316-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02316-6

Keywords

Navigation