Skip to main content
Log in

A Tight Lower Bound for Computing the Diameter of a 3D Convex Polytope

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

The diameter of a set P of n points in ℝd is the maximum Euclidean distance between any two points in P. If P is the vertex set of a 3-dimensional convex polytope, and if the combinatorial structure of this polytope is given, we prove that, in the worst case, deciding whether the diameter of P is smaller than 1 requires Ω(nlog n) time in the algebraic computation tree model. It shows that the O(nlog n) time algorithm of Ramos for computing the diameter of a point set in ℝ3 is optimal for computing the diameter of a 3-polytope. We also give a linear time reduction from Hopcroft’s problem of finding an incidence between points and lines in ℝ2 to the diameter problem for a point set in ℝ7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben-Or, M.: Lower bounds for algebraic computation trees. In: Proceedings of the 15th Annual ACM Symposium on Theory of Computing, pp. 80–86 (1983)

  2. Bespamyatnikh, S.: An efficient algorithm for the three-dimensional diameter problem. Discrete Comput. Geom. 25(2), 235–255 (2000)

    Article  MathSciNet  Google Scholar 

  3. Bürgisser, P., Clausen, M., Shokrollahi, M.: Algebraic Complexity Theory. Springer, Berlin (1997)

    MATH  Google Scholar 

  4. Bürgisser, P., Karpinski, M., Lickteig, T.: On randomized semi-algebraic test complexity. J. Complex. 9(2), 231–251 (1993)

    Article  MATH  Google Scholar 

  5. Chan, T.: Approximating the diameter, width, smallest enclosing cylinder, and minimum-width annulus. Int. J. Comput. Geom. Appl. 12(1–2), 67–85 (2002)

    Article  MATH  Google Scholar 

  6. Chazelle, B., Devillers, O., Hurtado, F., Mora, M., Sacristán, V., Teillaud, M.: Splitting a Delaunay triangulation in linear time. Algorithmica 34(1), 39–46 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Clarkson, K., Shor, P.: Applications of random sampling in computational geometry, II. Discrete Comput. Geom. 4, 387–421 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  8. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 2nd edn. Springer, Berlin (2000)

    MATH  Google Scholar 

  9. Erickson, J.: On the relative complexities of some geometric problems. In: Proceedings of the 7th Canadian Conference on Computational Geometry, pp. 85–90 (1995)

  10. Erickson, J.: New lower bounds for Hopcroft’s problem. Discrete Comput. Geom. 16, 389–418 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Grigoriev, D.: Randomized complexity lower bounds. In: Proceedings of the 30th ACM Symposium on Theory of Computing, pp. 219–223 (1998)

  12. Har-Peled, S.: A practical approach for computing the diameter of a point set. In: Proceedings of the Seventeenth Annual Symposium on Computational Geometry, New York, 3–5 June 2001, pp. 177–186. ACM, New York (2001)

    Chapter  Google Scholar 

  13. Malandain, G., Boissonnat, J.-D.: Computing the diameter of a point set. Int. J. Comput. Geom. Appl. 12(6), 489–510 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Matoušek, J.: Range searching with efficient hierarchical cuttings. Discrete Comput. Geom. 10(2), 157–182 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Matoušek, J., Schwarzkopf, O.: On ray shooting in convex polytopes. Discrete Comput. Geom. 10(2), 215–232 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Preparata, F., Shamos, I.: Computational Geometry: An Introduction, 2nd edn. Texts and Monographs in Computer Science. Springer, New York (1985)

    Google Scholar 

  17. Ramos, E.: An optimal deterministic algorithm for computing the diameter of a three-dimensional point set. Discrete Comput. Geom. 26, 233–244 (2001)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé Fournier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fournier, H., Vigneron, A. A Tight Lower Bound for Computing the Diameter of a 3D Convex Polytope. Algorithmica 49, 245–257 (2007). https://doi.org/10.1007/s00453-007-9010-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-007-9010-0

Keywords

Navigation