Skip to main content
Log in

A 25/17-Approximation Algorithm for the Stable Marriage Problem with One-Sided Ties

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

The problem of finding a largest stable matching where preference lists may include ties and unacceptable partners (MAX SMTI) is known to be NP-hard. It cannot be approximated within 33/29 (>1.1379) unless P=NP, and the current best approximation algorithm achieves the ratio of 1.5. MAX SMTI remains NP-hard even when preference lists of one side do not contain ties, and it cannot be approximated within 21/19 (>1.1052) unless P=NP. However, even under this restriction, the best known approximation ratio is still 1.5. In this paper, we improve it to 25/17 (<1.4706).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1

Similar content being viewed by others

References

  1. Abdulkadiroǧlu, A., Pathak, P.A., Roth, A.E., Sönmez, T.: The Boston public school match. Am. Econ. Rev. 95(2), 368–371 (2005)

    Article  Google Scholar 

  2. Abdulkadiroǧlu, A., Pathak, P.A., Roth, A.E., Sönmez, T.: Changing the Boston school choice mechanism: strategy-proofness as equal access. Manuscript (2006)

  3. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am. Math. Mon. 69, 9–15 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gale, D., Sotomayor, M.: Some remarks on the stable matching problem. Discrete Appl. Math. 11, 223–232 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algorithms. MIT Press, Boston (1989)

    MATH  Google Scholar 

  6. Halldórsson, M.M., Iwama, K., Miyazaki, S., Yanagisawa, H.: Randomized approximation of the stable marriage problem. Theor. Comput. Sci. 325(3), 439–465 (2004)

    Article  MATH  Google Scholar 

  7. Halldórsson, M.M., Iwama, K., Miyazaki, S., Yanagisawa, H.: Improved approximation results for the stable marriage problem. ACM Trans. Algorithms 3(3), 30 (2007)

    Article  MathSciNet  Google Scholar 

  8. Irving, R.W.: Stable marriage and indifference. Discrete Appl. Math. 48, 261–272 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Irving, R.W., Manlove, D.F.: Approximation algorithms for hard variants of the stable marriage and hospitals/residents problems. J. Comb. Optim. 16(3), 279–292 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Irving, R.W., Manlove, D.F., O’Malley, G.: Stable marriage with ties and bounded length preference lists. J. Discrete Algorithms 7(2), 213–219 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Iwama, K., Manlove, D.F., Miyazaki, S., Morita, Y.: Stable marriage with incomplete lists and ties. In: Proc. ICALP. LNCS, vol. 1644, pp. 443–452 (1999)

    Google Scholar 

  12. Iwama, K., Miyazaki, S., Okamoto, K.: “A (2−clogN/N)-approximation algorithm for the stable marriage problem. IEICE Transactions 89-D(8), 2380–2387 (2006)

    Google Scholar 

  13. Iwama, K., Miyazaki, S., Yamauchi, N.: A (\(2-c\frac{1}{\sqrt{N}}\))-approximation algorithm for the stable marriage problem. Algorithmica 51(3), 342–356 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Iwama, K., Miyazaki, S., Yamauchi, N.: A 1.875-approximation algorithm for the stable marriage problem. In: Proc. SODA, pp. 288–297 (2007)

    Google Scholar 

  15. Király, Z.: Better and simpler approximation algorithms for the stable marriage problem. Algorithmica 60(1), 3–20 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2−ϵ. J. Comput. Syst. Sci. 74(3), 335–349 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Manlove, D.F., Irving, R.W., Iwama, K., Miyazaki, S., Morita, Y.: Hard variants of stable marriage. Theor. Comput. Sci. 276(1–2), 261–279 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. McDermid, E.J.: A 3/2-approximation algorithm for general stable marriage. In: Proc. ICALP. LNCS, vol. 5555, pp. 689–700 (2009)

    Google Scholar 

  19. Roth, A.E., Peranson, E.: The redesign of the matching market for American physicians: some engineering aspects of economic design. Am. Econ. Rev. 89(4), 748–780 (1999)

    Article  Google Scholar 

  20. Roth, A.E., Rothblum, U.G., Vate, J.H.V.: Stable matchings, optimal assignments, and linear programming. Math. Oper. Res. 18(4), 803–828 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  21. Teo, C.-P., Sethuraman, J.: The geometry of fractional stable matchings and its applications. Math. Oper. Res. 23(4), 874–891 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Teo, C.-P., Sethuraman, J., Tan, W.P.: Gale-Shapley stable marriage problem revisited: strategic issues and applications. In: Proc. IPCO. LNCS, vol. 1610, pp. 429–438 (1999)

    Google Scholar 

  23. Yanagisawa, H.: Approximation algorithms for stable marriage problems. Ph. D. Thesis, Kyoto University (2007)

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Yanagisawa.

Additional information

This work was supported by JSPS KAKENHI Grant Number 22240001, 20700009, 24500013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwama, K., Miyazaki, S. & Yanagisawa, H. A 25/17-Approximation Algorithm for the Stable Marriage Problem with One-Sided Ties. Algorithmica 68, 758–775 (2014). https://doi.org/10.1007/s00453-012-9699-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-012-9699-2

Keywords

Navigation