Skip to main content
Log in

The \(\mathbb {Z}_2\)-Genus of Kuratowski Minors

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

A drawing of a graph on a surface is independently even if every pair of nonadjacent edges in the drawing crosses an even number of times. The \(\mathbb {Z}_2\) -genus of a graph G is the minimum g such that G has an independently even drawing on the orientable surface of genus g. An unpublished result by Robertson and Seymour implies that for every t, every graph of sufficiently large genus contains as a minor a projective \(t\times t\) grid or one of the following so-called t -Kuratowski graphs: \(K_{3,t}\), or t copies of \(K_5\) or \(K_{3,3}\) sharing at most two common vertices. We show that the \(\mathbb {Z}_2\)-genus of graphs in these families is unbounded in t; in fact, equal to their genus. Together, this implies that the genus of a graph is bounded from above by a function of its \(\mathbb {Z}_2\)-genus, solving a problem posed by Schaefer and Štefankovič, and giving an approximate version of the Hanani–Tutte theorem on orientable surfaces. We also obtain an analogous result for Euler genus and Euler \(\mathbb {Z}_2\)-genus of graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Paul Seymour, personal communication (2017)

  2. Paul Seymour, personal communication (2017)

References

  1. Battle, J., Harary, F., Kodama, Y., Youngs, J.W.T.: Additivity of the genus of a graph. Bull. Am. Math. Soc. 68, 565–568 (1962)

    Article  MathSciNet  Google Scholar 

  2. Böhme, T., Kawarabayashi, K., Maharry, J., Mohar, B.: $K_{3,k}$-minors in large $7$-connected graphs (2008). http://preprinti.imfm.si/PDF/01051.pdf

  3. Böhme, T., Kawarabayashi, K., Maharry, J., Mohar, B.: Linear connectivity forces large complete bipartite minors. J. Combin. Theory Ser. B 99(3), 557–582 (2009)

    Article  MathSciNet  Google Scholar 

  4. Bouchet, A.: Orientable and nonorientable genus of the complete bipartite graph. J. Combin. Theory Ser. B 24(1), 24–33 (1978)

    Article  MathSciNet  Google Scholar 

  5. de Caen, D.: The ranks of tournament matrices. Am. Math. Mon. 98(9), 829–831 (1991)

    Article  MathSciNet  Google Scholar 

  6. Cairns, G., Nikolayevsky, Y.: Bounds for generalized thrackles. Discrete Comput. Geom. 23(2), 191–206 (2000)

    Article  MathSciNet  Google Scholar 

  7. Chojnacki, Ch.: Über wesentlich unplättbare Kurven im dreidimensionalen Raume. Fund. Math. 23, 135–142 (1934)

    Article  Google Scholar 

  8. Christian, R., Richter, R.B., Salazar, G.: Embedding a graph-like continuum in some surface. J. Graph Theory 79(2), 159–165 (2015)

    Article  MathSciNet  Google Scholar 

  9. Colin de Verdière, É.: Computational topology of graphs on surfaces. In: Handbook of Discrete and Computational Geometry, 3rd ed., pp. 605–636 (chapter 23). CRC Press, Boca Raton (2018)

  10. Colin de Verdière, É., Kaluža, V., Paták, P., Patáková, Z., Tancer, M.: A direct proof of the strong Hanani–Tutte theorem on the projective plane. J. Graph Algorithms Appl. 21(5), 939–981 (2017)

    Article  MathSciNet  Google Scholar 

  11. Decker, R.W., Glover, H.H., Huneke, J.P.: Computing the genus of the $2$-amalgamations of graphs. Combinatorica 5(4), 271–282 (1985)

    Article  MathSciNet  Google Scholar 

  12. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173. Springer, Berlin (2017)

    Google Scholar 

  13. Fiedler, J.R., Huneke, J.P., Richter, R.B., Robertson, N.: Computing the orientable genus of projective graphs. J. Graph Theory 20(3), 297–308 (1995)

    Article  MathSciNet  Google Scholar 

  14. Fröhlich, J.-O., Müller, Th.: Linear connectivity forces large complete bipartite minors: an alternative approach. J. Combin. Theory Ser. B 101(6), 502–508 (2011)

    Article  MathSciNet  Google Scholar 

  15. Fulek, R., Kynčl, J.: Counterexample to an extension of the Hanani–Tutte theorem on the surface of genus $4$. Combinatorica 39(6), 1267–1279 (2019)

    Article  MathSciNet  Google Scholar 

  16. Gross, J.L., Tucker, Th.W.: Topological Graph Theory. Dover, Mineola (2001)

    MATH  Google Scholar 

  17. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  18. Hausmann, J.-C.: Mod Two Homology and Cohomology. Universitext. Springer, Cham (2014)

    Book  Google Scholar 

  19. Kawarabayashi, K., Mohar, B.: Some recent progress and applications in graph minor theory. Graphs Combin. 23(1), 1–46 (2007)

    Article  MathSciNet  Google Scholar 

  20. Kleitman, D.J.: A note on the parity of the number of crossings of a graph. J. Combin. Theory Ser. B 21(1), 88–89 (1976)

    Article  MathSciNet  Google Scholar 

  21. Kynčl, J.: Issue UPDATE: in graph theory, different definitions of edge crossing numbers—impact on applications? MathOverflow, answer to a question of user161819 (2020). https://mathoverflow.net/a/366876

  22. Loebl, M., Masbaum, G.: On the optimality of the Arf invariant formula for graph polynomials. Adv. Math. 226(1), 332–349 (2011)

    Article  MathSciNet  Google Scholar 

  23. Matoušek, J., Nešetřil, J.: Invitation to Discrete Mathematics. Oxford University Press, Oxford (2009)

    MATH  Google Scholar 

  24. Miller, G.L.: An additivity theorem for the genus of a graph. J. Combin. Theory Ser. B 43(1), 25–47 (1987)

    Article  MathSciNet  Google Scholar 

  25. Mohar, B.: Graph minors and graphs on surfaces. In: Surveys in Combinatorics (Sussex 2001). London Math. Soc. Lecture Note Ser., vol. 288, pp. 145–163. Cambridge University Press, Cambridge (2001)

  26. Mohar, B., Thomassen, C.: Graphs on Surfaces. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore (2001)

    Google Scholar 

  27. Pelsmajer, M.J., Schaefer, M., Stasi, D.: Strong Hanani–Tutte on the projective plane. SIAM J. Discrete Math. 23(3), 1317–1323 (2009)

    Article  MathSciNet  Google Scholar 

  28. Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Removing even crossings on surfaces. Eur. J. Combin. 30(7), 1704–1717 (2009)

    Article  MathSciNet  Google Scholar 

  29. Richter, R.B.: On the Euler genus of a $2$-connected graph. J. Combin. Theory Ser. B 43(1), 60–69 (1987)

    Article  MathSciNet  Google Scholar 

  30. Ringel, G.: Das Geschlecht des vollständigen paaren Graphen. Abh. Math. Sem. Univ. Hamburg 28, 139–150 (1965)

    Article  MathSciNet  Google Scholar 

  31. Ringel, G.: Der vollständige paare Graph auf nichtorientierbaren Flächen. J. Reine Angew. Math. 220, 88–93 (1965)

    MathSciNet  MATH  Google Scholar 

  32. Robertson, N., Seymour, P.D.: Graph minors. VII. Disjoint paths on a surface. J. Combin. Theory Ser. B 45(2), 212–254 (1988)

    Article  MathSciNet  Google Scholar 

  33. Robertson, N., Vitray, R.: Representativity of surface embeddings. In: Paths, Flows, and VLSI-Layout (Bonn 1988). Algorithms Combin., vol. 9, pp. 293–328. Springer, Berlin (1990)

  34. Schaefer, M.: Hanani–Tutte and related results. In: Geometry—Intuitive, Discrete, and Convex. Bolyai Soc. Math. Stud., vol. 24, pp. 259–299. János Bolyai Math. Soc., Budapest (2013)

  35. Schaefer, M., Štefankovič, D.: Block additivity of ${\mathbb{Z}}_2$-embeddings. In: 21st International Symposium on Graph Drawing (Bordeaux 2013). Lecture Notes in Comput. Sci., vol. 8242, pp. 185–195. Springer, Cham (2013)

  36. Stahl, S., Beineke, L.W.: Blocks and the nonorientable genus of graphs. J. Graph Theory 1(1), 75–78 (1977)

    Article  MathSciNet  Google Scholar 

  37. Székely, L.A.: A successful concept for measuring non-planarity of graphs: the crossing number. Discrete Math. 276(1–3), 331–352 (2004)

    Article  MathSciNet  Google Scholar 

  38. Tutte, W.T.: Toward a theory of crossing numbers. J. Combin. Theory 8, 45–53 (1970)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Zdeněk Dvořák, Xavier Goaoc, and Pavel Paták for helpful discussions. We also thank Bojan Mohar, Paul Seymour, Gelasio Salazar, Jim Geelen, and John Maharry for information about their unpublished results related to Conjecture 3.1. Finally we thank the reviewers for corrections and suggestions for improving the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kynčl.

Additional information

Editor in Charge: János Pach

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research was partially performed during the BIRS workshop “Geometric and Structural Graph Theory” (17w5154) in August 2017 and during a workshop on topological combinatorics organized by Arnaud de Mesmay and Xavier Goaoc in September 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fulek, R., Kynčl, J. The \(\mathbb {Z}_2\)-Genus of Kuratowski Minors. Discrete Comput Geom 68, 425–447 (2022). https://doi.org/10.1007/s00454-022-00412-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-022-00412-w

Keywords

Mathematics Subject Classification

Navigation