Skip to main content
Log in

Supranuclear Control of Swallowing

  • Review Article
  • Published:
Dysphagia Aims and scope Submit manuscript

Abstract

Swallowing is an act requiring complex sensorimotor integration. Using a variety of methods first used to study limb physiology, initial efforts to study swallowing have yielded information that multiple cortical and subcortical regions are active participants. Not surprisingly, the regions activated appear to overlap those involved in both oral and nonoral motor behaviors. This review offers a perspective that considers the supranuclear control of swallowing in light of these physiological similarities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Devries JIP, Visser GHA, Prechtl HFR. The emergence of fetal behavior: II. Quantitative aspects. Early Hum Dev. 1985;12:99–120.

    Article  CAS  Google Scholar 

  2. Collette F, Van der Linden M, Laureys S, Delfiore G, Degueldre C, Luxen A, et al. Exploring the unity and diversity of the neural substrates of executive functioning. Hum Brain Mapp. 2005;25:409–23.

    Article  PubMed  Google Scholar 

  3. Mosier K, Bereznaya I. Parallel cortical networks for volitional control of swallowing in humans. Exp Brain Res. 2001;140:280–9.

    Article  CAS  PubMed  Google Scholar 

  4. Haber SN. The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat. 2003;26:317–30.

    Article  PubMed  Google Scholar 

  5. Jean A. Brainstem organization of the swallowing network. Brain Bahav Evol. 1984;25:109–16.

    Article  CAS  Google Scholar 

  6. Jackson JH. On the study of disease of the nervous system. Clin Lect Rep Lond Hosp. 1864;1:146–58.

    Google Scholar 

  7. Morecraft RJ, Stilwell-Morecraft KS, Rossing WR. The motor cortex and facial expression. Neurologist. 2004;10:235–49.

    Article  PubMed  Google Scholar 

  8. Corfield DR, Murphy K, Josephs O, Fink GR, Frackowiak RS, Gus A, et al. Cortical and subcortical control of tongue movements in humans: a functional neuroimaging study using fMRI. J App Physiol. 1999;86:1468–77.

    CAS  Google Scholar 

  9. Malandraki GA, Sutton BP, Perlman A, Karampinos DC, Conway C. Neural activation of swallowing-related tasks in healthy young adults: an attempt to separate in components of deglutition. Hum Brain Mapp 2009; [Epub ahead of print].

  10. McKay LC, Evans KC, Frackowiak RS, Corfield DR. Neural correlates of voluntary breathing in humans. J Appl Physiol. 2003;95:1170–8.

    CAS  PubMed  Google Scholar 

  11. Evans KC, Shea SA, Saykin AJ. Functional MRI localization of central nervous system regions associated with volitional inspiration in humans. J Physiol. 1999;520:383–92.

    Article  CAS  PubMed  Google Scholar 

  12. Kern M, Birn R, Jaradeh S, Jesmanowicz A, Cox R, Hyde J, et al. Swallow-related cerebral cortical activity maps are not specific to deglutition. Am J Physiol Gastrointest Liver Physiol. 2001;280:G531–8.

    CAS  PubMed  Google Scholar 

  13. Satow T, Ikeda A, Yamamoto J-I, Begum T, Thuy DHD, Matsuhashi M, et al. Role of primary sensorimotor cortex and supplementary motor area in volitional swallowing: a movement-related cortical potential study. Am J Physiol Gastrointest Liver Physiol. 2004;287:G459–70.

    Article  CAS  PubMed  Google Scholar 

  14. Watanabe J, Sugiura M, Miura N, Watanabe Y, Maeda Y, Matsue Y, et al. The human parietal cortex is involved in spatial processing of tongue movement—an fMRI study. Neuroimage. 2004;21:1289–99.

    Article  PubMed  Google Scholar 

  15. Martin RE, MacIntosh BJ, Smith RC, Barr AM, Stevens TK, Gati JS, et al. Cerebral areas processing swallowing and tongue movement are overlapping but distinct: a functional magnetic resonance imaging study. J Neurophysiol. 2004;92:2428–43.

    Article  PubMed  Google Scholar 

  16. Corfield DR, Murphy K, Josephs O, Fink GR, Frackowiak RS, Guz A, et al. Cortical and subcortical control of tongue movement in humans: a functional neuroimaging study using fMRI. J Appl Physiol. 1999;86:1468–77.

    CAS  PubMed  Google Scholar 

  17. Hamdy S, Mikulis DJ, Crawley A, Xue S, Lau H, Henry S, et al. Cortical activation during human volitional swallowing: an event-related fMRI study. Am Physiol. 1999;277:G219–25.

    CAS  Google Scholar 

  18. Suzuki M, Asada Y, Ito J, Hayashi K, Inoue H, Kitano H. Activation of cerebellum and basal ganglia on volitional swallowing detected by functional magnetic resonance imaging. Dysphagia. 2003;18:71–7.

    Article  PubMed  Google Scholar 

  19. Mosier K, Patel R, Liu WC, Kalnin A, Maldjian J, Baredes S. Cortical representation of swallowing in normal adults: functional implications. Laryngoscope. 1999;109:1417–23.

    Article  CAS  PubMed  Google Scholar 

  20. Toogood JA, Barr AM, Stevens TK, Gati JS, Menon RS, Martin RE. Discrete functional contributions of cerebral cortical foci in voluntary swallowing: a functional magnetic resonance imaging (fMRI) “Go, No-Go” study. Exp Brain Res. 2005;161:81–90.

    Article  PubMed  Google Scholar 

  21. Martin RE, Goodyear BG, Gati JS, Menon RS. Cerebral cortical representation of automatic and volitional swallowing in humans. J Neurophysiol. 2001;85:938–50.

    CAS  PubMed  Google Scholar 

  22. Hartnick CJ, Rudolph C, Willging JP, Holland SK. Functional magnetic resonance imaging of the pediatric swallow: imaging the cortex and the brainstem. Laryngoscope. 2001;111:1183–91.

    Article  CAS  PubMed  Google Scholar 

  23. Zald DH, Pardo JV. The functional neuroanatomy of voluntary swallowing. Ann Neurol. 1999;46:281–6.

    Article  CAS  PubMed  Google Scholar 

  24. Hamdy S, Rothwell JC, Brooks DJ, Bailey D, Aziz Q, Thompson DG. Identification of the cerebral loci processing human swallowing with H2(15)O PET activation. J Neurophysiol. 1999;81:1917–26.

    CAS  PubMed  Google Scholar 

  25. Harris ML, Julyan P, Kulkarni B, Gow D, Hobson A, Hastings D, et al. Mapping metabolic brain activation during human volitional swallowing: a positron emission tomography study using [18F]fluorodeoxyglucose. J Cereb Blood Flow Metab. 2005;25:520–6.

    Article  PubMed  Google Scholar 

  26. Dziewas R, Soros P, Ishii R, Chau W, Henningsen H, Ringelstein EB, et al. Neuroimaging evidence for cortical involvement in the preparation and in the act of swallowing. Neuroimage. 2003;20:135–44.

    Article  CAS  PubMed  Google Scholar 

  27. Furlong PL, Hobson AR, Aziz Q, Barnes GR, Singh KD, Hillebrand A, et al. Dissociating the spatio-temporal characteristics of cortical neuronal activity associated with human volitional swallowing in the healthy adult brain. Neuroimage. 2004;22:1447–55.

    Article  CAS  PubMed  Google Scholar 

  28. Gow D, Hobson AR, Furlong P, Hamdy S. Characterising the central mechanisms of sensory modulation in human swallowing motor cortex. Clin Neurophysiol. 2004;115:2382–90.

    Article  PubMed  Google Scholar 

  29. Abe S, Wantanabe Y, Shintani M, Tazaki M, Takahashi M, Yamane GY, et al. Magnetoencephalographic study of the starting point of voluntary swallowing. Cranio. 2003;21:46–9.

    PubMed  Google Scholar 

  30. Watanabe Y, Abe S, Ishikawa T, Yamada Y, Yamane GY. Cortical regulation during the early stage of initiation of voluntary swallowing in humans. Dysphagia. 2004;19:100–8.

    Article  PubMed  Google Scholar 

  31. Martin R, Barr A, Macintosh B, Smith R, Stevens T, Taves D, et al. Cerebral cortical processing of swallowing in older adults. Exp Brain Res. 2007;176:12–22.

    Article  PubMed  Google Scholar 

  32. Huckabee ML, Deecke L, Cannito MP, Gould HJ, Mayr W. Cortical control mechanisms in volitional swallowing: the Bereitschafts potential. Brain Topogr. 2003;16:3–17.

    Article  PubMed  Google Scholar 

  33. Mistry S, Rothwell JC, Thompson DG, Hamdy S. Modulation of human cortical swallowing motor pathways after pleasant and aversive taste stimuli. Am J Physiol Gastrointest Liver Physiol. 2006;291:666–71.

    Article  Google Scholar 

  34. Sörös P, Inamoto Y, Martin RE. Functional brain imaging of swallowing: an activation likelihood estimation meta-analysis. Hum Brain Mapp. 2009;30:2426–39.

    Article  PubMed  Google Scholar 

  35. Humbert IA, Fitzgerald ME, McLaren DG, Johnson S, Porcaro E, Kosmatka K, et al. Neurophysiology of swallowing: effects of age and bolus type. Neuroimage. 2009;44:982–91.

    Article  PubMed  Google Scholar 

  36. Rolls ET. Sensory processing in the brain related to the control of food intake. Proc Nutr Soc. 2007;66:96–112.

    Article  PubMed  Google Scholar 

  37. Kadohisa M, Rolls ET, Verhagen JV. Orbitofrontal cortex: neuronal representation of oral temperature and capsaicin in addition to taste and texture. Neuroscience. 2004;127:207–21.

    Article  CAS  PubMed  Google Scholar 

  38. Teismann I, Steinstraiter O, Steickigt K, Suntrup S, Wollbrink A, Pantev C, et al. Functional oropharyngeal sensory disruption interferes with the cortical control of swallowing. BMC Neurosci. 2007;8:62.

    Article  PubMed  Google Scholar 

  39. Miyamoto JJ, Honda M, Saito DN, Okada T, Ono T, Ohyama K, et al. The representation of the human oral area in the somatosensory cortex: a functional MRI study. Cereb Cortex. 2006;16:669–75.

    Article  PubMed  Google Scholar 

  40. Hatanaka N, Tokuno H, Nambu A, Inoue T, Takada M. Input-output organization of jaw movement-related areas in monkey frontal cortex. J Comp Neurol. 2005;492:401–25.

    Article  PubMed  Google Scholar 

  41. Lamkadem M, Zoungrana OR, Amri M, Car A, Roman C. Stimulation of the chewing area of the cerebral cortex induces inhibitory effects upon swallowing in sheep. Brain Res. 1999;832:97–111.

    Article  CAS  PubMed  Google Scholar 

  42. Takada T, Miyamoto T. A fronto-parietal network for chewing of gum: a study on human subjects with functional magnetic resonance imaging. Neurosci Lett. 2004;360:137–40.

    Article  CAS  PubMed  Google Scholar 

  43. Narita N, Yamamura K, Yao D, Martin RE, Masuda Y, Sessle BJ. Effects on mastication of reversible bilateral inactivation of the lateral pericentral cortex in the monkey (Macaca fascicularis). Arch Oral Biol. 2002;47:673–88.

    Article  PubMed  Google Scholar 

  44. Delval A, Krystkowiak P, Blatt JL, Labyt E, Destee A, Derambure P, et al. Differences in anticipatory postural adjustments between self-generated and triggered gait initiation in 20 healthy subjects. Neurophysiol Clin. 2005;35:180–90.

    Article  CAS  PubMed  Google Scholar 

  45. Kandel S, Orliaguet JP, Boe LJ. Detecting anticipatory events in handwriting movements. Perception. 2000;29:953–64.

    Article  CAS  PubMed  Google Scholar 

  46. Kaminski TR, Simpkins S. The effects of stance configuration and target distance on reaching. I. movement preparation. Exp Brain Res. 2001;136:439–46.

    CAS  Google Scholar 

  47. Lekwuwa GU, Barnes GR. Cerebral control of eye movements. II. Timing of anticipatory eye movements, predictive pursuit and phase errors in focal cerebral lesions. Brain. 1996;119:491–505.

    Google Scholar 

  48. Porro CA, Baraldi P, Pagnoni G, Serafini M, Facchin P, Maieron M, et al. Does anticipation of pain affect cortical nociceptive systems? J Neurosci. 2002;22:3206–14.

    CAS  PubMed  Google Scholar 

  49. Erk S, Abler B, Walter H. Cognitive modulation of emotion anticipation. Eur J Neurosci. 2006;24:1227–36.

    Article  PubMed  Google Scholar 

  50. Nitschke JB, Sarinopoulos I, Mackiewicz KL, Schaefer HS, Davidson RJ. Functional neuroanatomy of aversion and its anticipation. Neuroimage. 2006;29:106–16.

    Article  PubMed  Google Scholar 

  51. Critchley HD, Mathias CJ, Dolan RJ. Neural activity in the human brain relating to uncertainty and arousal during anticipation. Neuron. 2001;29:537–45.

    Article  CAS  PubMed  Google Scholar 

  52. Wolpert DM, Miall RC. Forward models for physiological motor control. Neural Netw. 1996;9:1265–79.

    Article  PubMed  Google Scholar 

  53. Snyder LH, Batista AP, Andersen RA. Coding of intention in the posterior parietal cortex. Nature. 1997;386(6621):167–70.

    Article  CAS  PubMed  Google Scholar 

  54. Mulliken GH, Musallam S, Andersen RA. Forward estimation of movement state in posterior parietal cortex. Proc Natl Acad Sci USA. 2008;105:8170–7.

    Article  CAS  PubMed  Google Scholar 

  55. Leopold NA, Kagel MC. Swallowing, ingestion and dysphagia: a reappraisal. Arch Phys Med Rehabil. 1983;64:371–3.

    CAS  PubMed  Google Scholar 

  56. Maeda K, Ono T, Otsuka R, Ishiwata Y, Kuroda T, Ohyama K. Modulation of voluntary swallowing by visual inputs in humans. Dysphagia. 2004;19:1–6.

    Article  PubMed  Google Scholar 

  57. Pavlov IP. The work of the digestive glands. Charles Griffin and Co., Ltd: London; 1910. p. 65–94.

    Google Scholar 

  58. St-Onge MP, Sy M, Heymsfield SB, Hirsch J. Human cortical specialization for food: a functional magnetic resonance imaging investigation. J Nutr. 2005;135:1014–8.

    CAS  PubMed  Google Scholar 

  59. Kern MK, Chai K, Lawal A, Shaker R. Effect of esophageal acid exposure on the cortical swallowing network in healthy human subjects. Am J Physiol Gastrointest Liver Physiol 2009;297:G152–8.

    Article  CAS  PubMed  Google Scholar 

  60. Zafra MA, Molina F, Puerto A. The neural/cephalic phase reflexes in the physiology of nutrition. Neurosci Biobehav Rev. 2006;30:1032–44.

    Article  PubMed  Google Scholar 

  61. Zahm DS, Trimble M. The dopaminergic projection system, basal forebrain macrosystems, and conditioned stimuli. CNS Spectr. 2008;13:32–40.

    PubMed  Google Scholar 

  62. Hauk O, Johnsrude I, Pulvermuller F. Somatotopic representation of action words in human motor and premotor cortex. Neuron. 2004;4:301–7.

    Article  Google Scholar 

  63. Daniels SK, Corey DM, Barnes CL, Faucheaux NM, Priestly DH, Foundas AL. Cortical representation of swallowing: a modified dual task paradigm. Percept Mot Skills. 2002;94:1029–40.

    PubMed  Google Scholar 

  64. Daniels SK, Corey DM, Fraychinaud A, DePolo A, Foundas AL. Swallowing lateralization: the effects of modified dual-task interference. Dysphagia. 2006;21:21–7.

    Article  PubMed  Google Scholar 

  65. Robbins J, Levine RL. Swallowing after unilateral stroke of the cerebral cortex: preliminary experience. Dysphagia. 1988;3:11–7.

    Article  CAS  PubMed  Google Scholar 

  66. Robbins J, Levine RL, Maser A, Rosenbek JC, Kempster G. Swallowing after unilateral stroke of the cerebral cortex. Arch Phys Med Rehabil. 1993;74:1295–300.

    Article  CAS  PubMed  Google Scholar 

  67. Smithard DG, O’Neill PA, Martin DF, England R. Aspiration following stroke: is it related to the side of the stroke? Clin Rehabil. 1997;11:73–6.

    Article  CAS  PubMed  Google Scholar 

  68. Chen MYM, Ott DJ, Peele VN, Gelfand DW. Oropharynx in patients with cerebrovascular disease: evaluation with videofluoroscopy. Radiology. 1990;176:641–3.

    CAS  PubMed  Google Scholar 

  69. Alberts MJ, Horner J, Gray L, Brazer SR. Aspiration after stroke: lesion analysis by brain MRI. Dysphagia. 1992;7:170–3.

    Article  CAS  PubMed  Google Scholar 

  70. Daniels SK, Foundas AL. Lesion localization in acute stroke patients with risk of aspiration. J Neuroimaging. 1999;9:91–8.

    CAS  PubMed  Google Scholar 

  71. Daniels SK, Foundas AL, Iglesia GC, Sullivan MA. Lesion site in unilateral stroke patients with dysphagia. J Stroke Cerebrovasc Dis. 1996;6:30–4.

    Article  CAS  PubMed  Google Scholar 

  72. Daniels SK, Foundas AL. The role of the insular cortex in dysphagia. Dysphagia. 1997;12:146–56.

    Article  CAS  PubMed  Google Scholar 

  73. Kelly RM, Strick PL. Macro-architecture of basal ganglia loops with the cerebral cortex: use of rabies virus to reveal multisynaptic circuits. Prog Brain Res. 2004;143:449–59.

    PubMed  Google Scholar 

  74. Nakano K, Kayahara T, Tsutsumi T, Ushiro H. Neural circuits and functional organization of the striatum. J Neurol. 2000;247(Suppl 5):V1–15.

    Article  PubMed  Google Scholar 

  75. Romanelli P, Esposito V, Schall DW, Heir G. Somatotopy in the basal ganglia: experimental and clinical evidence for segregated sensorimotor channels. Brain Res Brain Res Rev. 2005;48:112–28.

    Article  PubMed  Google Scholar 

  76. Lehericy S, Bardinet E, Tremblay L, Van de Moortele P-F, Pochon J-B, Dormont D, et al. Motor control in basal ganglia circuits using fMRI and brain atlas approaches. Cereb Cortex. 2006;16:149–61.

    Article  PubMed  Google Scholar 

  77. Gerardin E, Pochon JB, Poline JB, Tremblay L, Van de Moortele PF, Levy R, et al. Distinct striatal regions support movement selection, preparation and execution. Neuroreport. 2004;15:2327–31.

    Article  PubMed  Google Scholar 

  78. de Lange FP, Hagoort P, Toni I. Neural topography and content of movement representations. J Cog Neurosci. 2005;17:97–112.

    Article  Google Scholar 

  79. Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP. Internal vs external generation of movements: differential neural pathways involved in bimanual coordination performed in the presence or absence of augmented visual feedback. Neuroimage. 2003;19:764–76.

    Article  PubMed  Google Scholar 

  80. Adachi K, Hasegawa M, Fujita S, Sato M, Miwa Y, Ikeda H, et al. Dopaminergic and cholinergic stimulation of the ventrolateral striatum elicits rat jaw movements that are funneled via distinct efferents. Eur J Pharmacol. 2002;442:81–92.

    CAS  PubMed  Google Scholar 

  81. Inchul P, Amano N, Satoda T, Murata T, Kawagishi S, Yoshino K, et al. Control of oro-facio-lingual movements by the substantia nigra pars reticulata: high-frequency electrical microstimulation and GABA microinjection findings in rats. Neuroscience. 2005;134:677–89.

    Article  CAS  PubMed  Google Scholar 

  82. Schwartzman RJ, Alexander GM. Changes in the local cerebral metabolic rate for glucose in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) primate model of Parkinson’s disease. Brain Res. 1985;358:137–43.

    Article  CAS  PubMed  Google Scholar 

  83. Martin RE, Kemppainen P, Masuda Y, Yao D, Murray GM, Sessle BJ. Features of cortically evoked swallowing in the awake primate (Macaca fascicularis). J Neurophysiol. 1999;82:1529–41.

    CAS  PubMed  Google Scholar 

  84. Yasui Y, Tsumori T, Ando A, Domoto T. Demonstration of axon collateral projections from the substantia nigra pars reticulate to the superior colliculus and the parvicellular reticular formation of the rat. Brain Res. 1995;674:122–6.

    Article  CAS  PubMed  Google Scholar 

  85. Yasui Y, Tsumori T, Ono K, Kishi T. Nigral axon terminals are in contact with parvicellular reticular neurons which project to the motor trigeminal nucleus in the rat. Brain Res. 1997;775:219–24.

    Article  CAS  PubMed  Google Scholar 

  86. Grillner S, Hellgren J, Menard A, Saitoh K, Wikstrom MA. Mechanisms for selection of basic motor programs—roles for the striatum and pallidum. Trends Neurosci. 2005;28:364–70.

    Article  CAS  PubMed  Google Scholar 

  87. Leopold NA. Dysphagia in Parkinson’s Disease. In: Pfeiffer R, Bodis-Wollner IN, editors. Parkinson’s disease and nonmotor dysfunction. Totowa, NJ: Humana Press; 2005. p. 93–104.

    Google Scholar 

  88. Leopold NA. Dysphagia in drug-induced parkinsonism: a case report. Dysphagia. 1996;11:151–3.

    Article  CAS  PubMed  Google Scholar 

  89. Leopold NA, Kagel MC. Dysphagia in progressive supranuclear palsy: radiologic features. Dysphagia. 1997;12:140–3.

    Article  CAS  PubMed  Google Scholar 

  90. Leopold NA, Kagel MC. Dysphagia in Huntington’s disease. Arch Neurol. 1985;42:57–60.

    CAS  PubMed  Google Scholar 

  91. Boecker H, Jankowski J, Ditter P, Scheef L. A role of the basal ganglia and midbrain nuclei for initiation of motor sequences. Neuroimage. 2008;39:1356–69.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Maggie-Lee Huckabee, PhD, whose efforts were the major stimulus for this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman A. Leopold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leopold, N.A., Daniels, S.K. Supranuclear Control of Swallowing. Dysphagia 25, 250–257 (2010). https://doi.org/10.1007/s00455-009-9249-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00455-009-9249-5

Keywords

Navigation