Skip to main content
Log in

Enriched residual free bubbles for semiconductor device simulation

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This article outlines a method for stabilising the current continuity equations which are used for semiconductor device simulation. Residual-free bubble functions (RfBF) are incorporated into a finite element (FE) implementation that are able to prevent oscillations which are seen when using the conventional Bubnov-Galerkin FE implementation. In addition, it is shown that the RfBF are able to provide stabilisation with very distorted meshes and curved interface boundaries. Comparison with the commonly used SUPG scheme is made throughout, showing that in the case of 2D problems the RfBF allow faster convergence of the coupled semiconductor device equations, especially in the case of distorted meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bank R, Rose D, Fichtner W (1983) Numerical methods for semiconductor device simulation. IEEE Trans Electron Devic 30(9): 1031

    Article  Google Scholar 

  2. Barnes J, Lomax R (1977) Finite-element methods in semiconductor device simulation. IEEE Trans Electron Devic 24(8): 1082–1088

    Article  Google Scholar 

  3. Brezzi F, Franca L, Russo A (1998) Further considerations on residual-free bubbles for advective-diffusive equations. Comput Methods Appl Mech Eng 166(1–2): 25–33

    Article  MathSciNet  MATH  Google Scholar 

  4. Brezzi F, Marini L, Pietra P (1989) Numerical simulation of semiconductor devices. Comput Methods Appl Mech Eng 75: 493–514

    Article  MathSciNet  MATH  Google Scholar 

  5. Brezzi M (1992) A relationship between stabilized finite element methods and the galerkin method with bubble functions. Comput Methods Appl Mech Eng 96(1): 117–129

    Article  MathSciNet  MATH  Google Scholar 

  6. Brooks A, Hughes T (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32: 199–259

    Article  MathSciNet  MATH  Google Scholar 

  7. Bürgler J, Bank R, Fichtner W, Smith R (1989) A new discretisation scheme for the semiconductor current continuity equations. IEEE Trans Comput-Aided Design 8(5): 479–489

    Article  Google Scholar 

  8. Carey G, Pardhanani A, Bova S (2000) Advanced numerical methods and software approaches for semiconductor device simulation. Vlsi Des 10(4): 391–414

    Article  Google Scholar 

  9. Hughes T (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications, Mineola

    MATH  Google Scholar 

  10. Lin P, Shadid J, Sala M, Tuminaro R, Hennigan G, Hoekstra R (2009) Performance of a parallel algebraic multilevel preconditioner for stabilised finite element semiconductor device modelling. J Comput Phys 228: 6250–6267

    Article  MathSciNet  MATH  Google Scholar 

  11. Lin P, Shadid J, Tuminaro R, Sala M (2010) Performance of a petrov-galerkin algebraic multilevel preconditioner for finite element modelling of the semiconductor device DD equations. Int J Numer Methods Eng 88: 448–469

    MathSciNet  Google Scholar 

  12. Machek J, Selberherr S (1983) A novel finite-element approach to device modelling. IEEE Trans Electron Devices 30(9): 1083–1092

    Article  Google Scholar 

  13. Mock M. (1984) Quadrilateral elements and the Scharfetter-Gummel method. Simul Semicond Devices Process 1: 298–309

    Google Scholar 

  14. Nassehi V, Parvazinia M (2009) A multiscale finite element space-time discretization method for transient transport phenomena using bubble functions. Finite Elem Anal Design 45: 315–323

    Article  MathSciNet  Google Scholar 

  15. Parvazinia M, Nassehi V, Wakeman R (2006) Multi-scale finite element modelling using bubble function method for a convection-diffusion problem. Chemical Engineering Science 61: 2742–2751

    Article  Google Scholar 

  16. Polak SJ, Heijer CD, Schilders WHA, Markowich P (1987) Semiconductor device modelling from a numerical point of view. Int J Numer Methods Eng 24(4): 763–838

    Article  MATH  Google Scholar 

  17. Scharfetter D, Gummel H (1969) Large-signal analysis of a silicon read diode oscillator. IEEE Trans Electron Devices 16(1): 64–77

    Article  Google Scholar 

  18. Sharma M, Carey G (1989) Semiconductor device modelling using flux upwind finite elements. Int J Comput Math Electr Electr Eng 8(4): 219–224

    Article  MATH  Google Scholar 

  19. Sharma M, Carey G (1989) Semiconductor device simulation using adaptive refinement and flux upwinding. Comput-Aided Design Integr Circ Syst. IEEE Trans Comput Aided Design 8(6): 590–598. doi:10.1109/43.31515

    Article  Google Scholar 

  20. Trattles J, Johnson C (1997) Comparative study of finite element formulations for the semiconductor DD equations. Int J Numer Methods Eng 40: 3405–3419

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. A. Bordas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simpson, R.N., Bordas, S.P.A., Asenov, A. et al. Enriched residual free bubbles for semiconductor device simulation. Comput Mech 50, 119–133 (2012). https://doi.org/10.1007/s00466-011-0658-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-011-0658-6

Keywords

Navigation