Skip to main content
Log in

Computational and experimental investigation of free vibration and flutter of bridge decks

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A modified rigid-object formulation is developed, and employed as part of the fluid–object interaction modeling framework from Akkerman et al. (J Appl Mech 79(1):010905, 2012. https://doi.org/10.1115/1.4005072) to simulate free vibration and flutter of long-span bridges subjected to strong winds. To validate the numerical methodology, companion wind tunnel experiments have been conducted. The results show that the computational framework captures very precisely the aeroelastic behavior in terms of aerodynamic stiffness, damping and flutter characteristics. Considering its relative simplicity and accuracy, we conclude from our study that the proposed free-vibration simulation technique is a valuable tool in engineering design of long-span bridges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Akkerman I, Bazilevs Y, Benson DJ, Farthing MW, Kees CE (2012) Free-surface flow and fluid-object interaction modeling with emphasis on ship hydrodynamics. J Appl Mech 79(1):010905. https://doi.org/10.1115/1.4005072

    Article  Google Scholar 

  2. Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C, Øiseth O, Mathisen KM, Kostov N, McIntyre S (2014) Engineering analysis and design with ALE-VMS and space-time methods. Arch Comput Methods Eng 21(4):481–508. https://doi.org/10.1007/s11831-014-9113-0

    Article  MathSciNet  MATH  Google Scholar 

  3. Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces. The deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94(3):353–371. https://doi.org/10.1016/0045-7825(92)90060-W

    Article  MathSciNet  MATH  Google Scholar 

  4. Mittal S, Tezduyar TE (1992) A finite element study of incompressible flows past oscillating cylinders and aerofoils. Int J Numer Methods Fluids 15(9):1073–1118. https://doi.org/10.1002/fld.1650150911

    Article  Google Scholar 

  5. Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8:83–130. https://doi.org/10.1007/BF02897870

    Article  MATH  Google Scholar 

  6. Ed Akin J, Tezduyar TE, Ungor M (2007) Computation of flow problems with the mixed interface-tracking/interface-capturing technique (MITICT). Comput Fluids 36(1):2–11. https://doi.org/10.1016/j.compfluid.2005.07.008

    Article  MATH  Google Scholar 

  7. Akkerman I, Bazilevs Y, Kees CE, Farthing MW (2011) Isogeometric analysis of free-surface flow. J Comput Phys 230(11):4137–4152. https://doi.org/10.1016/j.jcp.2010.11.044

    Article  MathSciNet  MATH  Google Scholar 

  8. Akkerman I, Dunaway J, Kvandal J, Spinks J, Bazilevs Y (2012) Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS. Comput Mech 50(6):719–727. https://doi.org/10.1007/s00466-012-0770-2

    Article  Google Scholar 

  9. Kees CE, Akkerman I, Farthing MW, Bazilevs Y (2011) A conservative level set method suitable for variable-order approximations and unstructured meshes. J Comput Phys 230(12):4536–4558. https://doi.org/10.1016/j.jcp.2011.02.030

    Article  MathSciNet  MATH  Google Scholar 

  10. R. P. Selvam, S. Govindaswamy, H. Bosch, Aeroelastic analysis of bridges using FEM and moving grids, Wind and Structures 5 (2\_3\_4) (2002) 257–266. https://doi.org/10.12989/was.2002.5.2_3_4.257. http://koreascience.or.kr/journal/view.jsp?kj=KJKHCF&py=2002&vnc=v5n2_3_4&sp=257

  11. Frandsen JB (2004) Numerical bridge deck studies using finite elements. Part I: Flutter. J Fluids Struct 19(2):171–191. https://doi.org/10.1016/j.jfluidstructs.2003.12.005

    Article  Google Scholar 

  12. Bazilevs Y, Hsu M-C, Takizawa K, Tezduyar TE (2012) ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid-structure interaction. Math Models Methods Appl Sci 22(supp02):1230002. https://doi.org/10.1142/S0218202512300025

    Article  MATH  Google Scholar 

  13. Bazilevs Y, Takizawa K, Tezduyar TE (2013) Challenges and directions in computational fluid-structure interaction. Math Models Methods Appl Sci 23(02):215–221. https://doi.org/10.1142/S0218202513400010

    Article  MathSciNet  MATH  Google Scholar 

  14. Bazilevs Y, Takizawa K, Tezduyar TE, Hsu M-C, Kostov N, McIntyre S (2014) Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods. Arch Comput Methods Eng 21(4):359–398. https://doi.org/10.1007/s11831-014-9119-7

    Article  MathSciNet  MATH  Google Scholar 

  15. Bazilevs Y, Takizawa K, Tezduyar TE (2015) New directions and challenging computations in fluid dynamics modeling with stabilized and multiscale methods. Math Models Methods Appl Sci 25(12):2217–2226. https://doi.org/10.1142/S0218202515020029

    Article  MathSciNet  MATH  Google Scholar 

  16. Bazilevs Y, Korobenko A, Yan J, Pal A, Gohari SMI, Sarkar S (2015) ALEVMS formulation for stratified turbulent incompressible flows with applications. Math Models Methods Appl Sci 25(12):2349–2375. https://doi.org/10.1142/S021820251540011

    Article  MathSciNet  MATH  Google Scholar 

  17. Bazilevs Y, Michler C, Calo VM, Hughes TJR (2007) Weak Dirichlet boundary conditions for wall-bounded turbulent flows. Comput Methods Appl Mech Eng 196(49–52):4853–4862. https://doi.org/10.1016/j.cma.2007.06.026

    Article  MathSciNet  MATH  Google Scholar 

  18. Bazilevs Y, Hughes TJR (2007) Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput Fluids 36(1):12–26. https://doi.org/10.1016/j.compfluid.2005.07.012

    Article  MathSciNet  MATH  Google Scholar 

  19. Bazilevs Y, Akkerman I (2010) Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual-based variational multiscale method. J Comput Phys 229(9):3402–3414. https://doi.org/10.1016/j.jcp.2010.01.008

    Article  MathSciNet  MATH  Google Scholar 

  20. Bazilevs Y, Tezduyar TE (2013) Computational fluid structure interaction methods and application. Wiley, Hoboken. https://doi.org/10.1002/9781118483565

    Book  MATH  Google Scholar 

  21. Hsu M-C, Akkerman I, Bazilevs Y (2012) Wind turbine aerodynamics using ALEVMS: validation and the role of weakly enforced boundary conditions. Comput Mech 50(4):499–511. https://doi.org/10.1007/s00466-012-0686-x

    Article  MathSciNet  Google Scholar 

  22. Hsu M-C, Kamensky D, Bazilevs Y, Sacks MS, Hughes TJR (2014) Fluid structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Comput Mech 54(4):1055–1071. https://doi.org/10.1007/s00466-014-1059-4

    Article  MathSciNet  MATH  Google Scholar 

  23. Yan J, Korobenko A, Deng X, Bazilevs Y (2016) Computational free-surface fluid structure interaction with application to floating offshore wind turbines. Computers & Fluids 141:155–174. https://doi.org/10.1016/j.compfluid.2016.03.008. http://linkinghub.elsevier.com/retrieve/pii/S0045793016300536

  24. Scotta R, Lazzari M, Stecca E, Cotela J, Rossi R (2016) Numerical wind tunnel for aerodynamic and aeroelastic characterization of bridge deck sections. Comput Struct 167:96–114. https://doi.org/10.1016/j.compstruc.2016.01.012

    Article  Google Scholar 

  25. Helgedagsrud TA, Mathisen KM, Bazilevs Y, Øiseth O, Korobenko A (2017) Using ALE-VMS to compute wind forces on moving bridge decks. In: Skallerud B, Andersson HI (eds.) Proceedings of MekIT’17 ninth national conference on computational mechanics, CMIME, Barcelona, Spain, pp. 169–189

  26. Helgedagsrud TA, Bazilevs Y, Korobenko A, Mathisen KM, Øiseth OA (2018) Using ALE-VMS to compute aerodynamic derivatives of bridge sections, Computers Fluids, published online. https://doi.org/10.1016/j.compfluid.2018.04.037. http://linkinghub.elsevier.com/retrieve/pii/S0045793018302330

  27. Takizawa K, Tezduyar TE (2011) Multiscale spacetime fluid structure interaction techniques. Comput Mech 48(3):247–267. https://doi.org/10.1007/s00466-011-0571-z

    Article  MathSciNet  MATH  Google Scholar 

  28. Takizawa K, Tezduyar TE (2012) Space-time fluid-structure interaction methods. Math Models Methods Appl Sci 22(supp02):1230001. https://doi.org/10.1142/S0218202512300013

    Article  MathSciNet  MATH  Google Scholar 

  29. Takizawa K, Tezduyar TE, Buscher A, Asada S (2014) Spacetime interface-tracking with topology change (ST-TC). Comput Mech 54(4):955–971. https://doi.org/10.1007/s00466-013-0935-7

    Article  MathSciNet  MATH  Google Scholar 

  30. Takizawa K, Tezduyar TE, Buscher A (2015) Spacetime computational analysis of MAV flapping-wing aerodynamics with wing clapping. Comput Mech 55(6):1131–1141. https://doi.org/10.1007/s00466-014-1095-0

    Article  Google Scholar 

  31. Takizawa K, Tezduyar TE, Buscher A, Asada S (2014) Spacetime fluid mechanics computation of heart valve models. Comput Mech 54(4):973–986. https://doi.org/10.1007/s00466-014-1046-9

    Article  MATH  Google Scholar 

  32. Takizawa K, Tezduyar TE, Terahara T, Sasaki T (2017) Heart valve flow computation with the integrated SpaceTime VMS. Slip interface, topology change and isogeometric discretization methods. Comput Fluids 158:176–188. https://doi.org/10.1016/j.compfluid.2016.11.012. http://linkinghub.elsevier.com/retrieve/pii/S0045793016303681

  33. Takizawa K, Tezduyar TE, Kuraishi T, Tabata S, Takagi H (2016) Computational thermo-fluid analysis of a disk brake. Comput Mech 57(6):965–977. https://doi.org/10.1007/s00466-016-1272-4

    Article  MathSciNet  MATH  Google Scholar 

  34. Takizawa K, Tezduyar TE, Hattori H (2017) Computational analysis of flow-driven string dynamics in turbomachinery. Comput Fluids 142:109–117. https://doi.org/10.1016/j.compfluid.2016.02.019

    Article  MathSciNet  MATH  Google Scholar 

  35. Takizawa K, Tezduyar TE, Otoguro Y, Terahara T, Kuraishi T, Hattori H (2017) Turbocharger flow computations with the spacetime isogeometric analysis (ST-IGA). Comput Fluids 142:15–20. https://doi.org/10.1016/j.compfluid.2016.02.021

    Article  MathSciNet  MATH  Google Scholar 

  36. Otoguro Y, Takizawa K, Tezduyar TE (2017) Spacetime VMS computational flow analysis with isogeometric discretization and a general-purpose NURBS mesh generation method. Comput Fluids 158:189–200. https://doi.org/10.1016/j.compfluid.2017.04.017

    Article  MathSciNet  MATH  Google Scholar 

  37. Takizawa K, Tezduyar TE, Asada S, Kuraishi T (2016) SpaceTime method for flow computations with slip interfaces and topology changes (ST-SI-TC). Comput Fluids 141:124–134. https://doi.org/10.1016/j.compfluid.2016.05.006

    Article  MathSciNet  MATH  Google Scholar 

  38. Šarkić A, Fisch R, Höffer R, Bletzinger KU (2012) Bridge flutter derivatives based on computed, validated pressure fields. J Wind Eng Ind Aerodyn 104–106:141–151. https://doi.org/10.1016/j.jweia.2012.02.033

    Article  Google Scholar 

  39. Brusiani F, Miranda SD, Patruno L, Ubertini F, Vaona P (2013) On the evaluation of bridge deck flutter derivatives using RANS turbulence models. J Wind Eng 119:39–47

    Google Scholar 

  40. Bai Y, Yang K, Sun D, Zhang Y, Kennedy D, Williams F, Gao X (2013) Numerical aerodynamic analysis of bluff bodies at a high Reynolds number with three-dimensional CFD modeling. Sci China Phys Mech Astron 56(2):277–289. https://doi.org/10.1007/s11433-012-4982-4

    Article  Google Scholar 

  41. de Miranda S, Patruno L, Ubertini F, Vairo G (2014) On the identification of flutter derivatives of bridge decks via RANS turbulence models: Benchmarking on rectangular prisms. Eng Struct 76:359–370. https://doi.org/10.1016/j.engstruct.2014.07.027

    Article  Google Scholar 

  42. Nieto F, Owen JS, Hargreaves DM, Hernández S (2015) Bridge deck flutter derivatives: efficient numerical evaluation exploiting their interdependence. J Wind Eng Ind Aerodyn J 136:138–150

    Article  Google Scholar 

  43. Patruno L (2015) Accuracy of numerically evaluated flutter derivatives of bridge deck sections using RANS: effects on the flutter onset velocity. Eng Struct 89:49–65. https://doi.org/10.1016/j.engstruct.2015.01.034

    Article  Google Scholar 

  44. Diana G, Rocchi D, Belloli M (2015) Wind tunnel : a fundamental tool for long-span bridge design. Struct Infrastruct Eng Maint Manag Life Cycle Des Perform 11(4):533–555. https://doi.org/10.1080/15732479.2014.951860

    Article  Google Scholar 

  45. Siedziako B, Øiseth O, Rønnquist A (2017) An enhanced forced vibration rig for wind tunnel testing of bridge deck section models in arbitrary motion. J Wind Eng Ind Aerodyn 164:152–163. https://doi.org/10.1016/j.jweia.2017.02.011

    Article  Google Scholar 

  46. Scanlan RH, Tomko J (1971) Airfoil and bridge deck flutter derivatives. J Eng Mech Div 97(6):1717–1737

    Google Scholar 

  47. Svend Ole Hansen APS, The Hardanger bridge: static and dynamic wind tunnel tests with a section model. Technical report, prepared for Norwegian Public Roads Administration, Tech. rep. (2006)

  48. Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29(3):329–349. https://doi.org/10.1016/0045-7825(81)90049-9

    Article  MathSciNet  MATH  Google Scholar 

  49. Hughes T, Tezduyar T (1984) Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible euler equations. Comput Methods Appl Mech Eng 45(1–3):217–284. https://doi.org/10.1016/0045-7825(84)90157-9

    Article  MathSciNet  MATH  Google Scholar 

  50. Hughes TJ, Franca LP, Balestra M (1986) A new finite element formulation for computational fluid dynamics. : V. Circumventing the babuška-brezzi condition: a stable Petrov-Galerkin formulation of the stokes problem accommodating equal-order interpolations. Comput Methods Appl Mech Eng 59(1):85–99. https://doi.org/10.1016/0045-7825(86)90025-3

    Article  MATH  Google Scholar 

  51. Tezduyar T, Park Y (1986) Discontinuity-capturing finite element formulations for nonlinear convection-diffusion-reaction equations. Comput Methods Appl Mech Eng 59(3):307–325. https://doi.org/10.1016/0045-7825(86)90003-4

    Article  MATH  Google Scholar 

  52. Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190:411–430. https://doi.org/10.1016/S0045-7825(00)00211-5

    Article  MATH  Google Scholar 

  53. Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43(5):555–575. https://doi.org/10.1002/fld.505

    Article  MathSciNet  MATH  Google Scholar 

  54. Hughes TJR, Sangalli G (2007) Variational multiscale analysis: the fine scale Green’s function, projection, optimization, localization, and stabilized methods. SIAM J Numer Anal 45(2):539–557. https://doi.org/10.1137/050645646

    Article  MathSciNet  MATH  Google Scholar 

  55. Hsu M-C, Bazilevs Y, Calo V, Tezduyar T, Hughes T (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time step. Comput Methods Appl Mech Eng 199(13–16):828–840. https://doi.org/10.1016/j.cma.2009.06.019

    Article  MathSciNet  MATH  Google Scholar 

  56. Takizawa K, Tezduyar TE, Kuraishi T (2015) Multiscale spacetime methods for thermo-fluid analysis of a ground vehicle and its tires. Math Models Methods Appl Sci 25(12):2227–2255. https://doi.org/10.1142/S0218202515400072

    Article  MathSciNet  MATH  Google Scholar 

  57. Takizawa K, Tezduyar TE, Mochizuki H, Hattori H, Mei S, Pan L, Montel K (2015) Spacetime VMS method for flow computations with slip interfaces (ST-SI). Math Models Methods Appl Sci 25(12):2377–2406. https://doi.org/10.1142/S0218202515400126

    Article  MathSciNet  MATH  Google Scholar 

  58. K. Takizawa, T. E. Tezduyar, Y. Otoguro, Stabilization and discontinuity-capturing parameters for spacetime flow computations with finite element and isogeometric discretizations, Comput Mech.published online (2018). https://doi.org/10.1007/s00466-018-1557-x

  59. Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43(1):3–37. https://doi.org/10.1007/s00466-008-0315-x

    Article  MathSciNet  MATH  Google Scholar 

  60. Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid-structure interactions with large displacements. J Appl Mech 70(1):58. https://doi.org/10.1115/1.1530635

    Article  MATH  Google Scholar 

  61. Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressiblke flows and massively parallel implementations. New Methods Transient Anal 246:7–24

    Google Scholar 

  62. Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26(10):27–36. https://doi.org/10.1109/2.237441

    Article  MATH  Google Scholar 

  63. Johnson A, Tezduyar T (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119(1–2):73–94. https://doi.org/10.1016/0045-7825(94)00077-8

    Article  MATH  Google Scholar 

  64. Hughes TJR, Winget J (1980) Finite rotation effects in numerical integration of rate constitutive equations arising in large-deformation analysis. Int J Numer Methods Eng 15(12):1862–1867. https://doi.org/10.1002/nme.1620151210

    Article  MathSciNet  MATH  Google Scholar 

  65. Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-\(\alpha \) method for integrating the filtered Navier-Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190:305–319

    Article  MathSciNet  MATH  Google Scholar 

  66. Kuhl E, Hulshoff S, de Borst R (2003) An arbitrary lagrangian eulerian finite-element approach for fluid-structure interaction phenomena. Int J Numer Methods Eng 57(1):117–142. https://doi.org/10.1002/nme.749

    Article  MATH  Google Scholar 

  67. Dettmer WG, Peric D (2006) A computational framework for fluid-structure interaction: finite element formulation and applications. Comput Methods Appl Mech Eng 195:5754–5779

    Article  MATH  Google Scholar 

  68. Øiseth O, Rönnquist A, Sigbjörnsson R (2010) Simplified prediction of wind-induced response and stability limit of slender long-span suspension bridges, based on modified quasi-steady theory: A case study. J Wind Eng Ind Aerodyn 98(12):730–741. https://doi.org/10.1016/j.jweia.2010.06.009

    Article  Google Scholar 

  69. Scanlan RH (1993) Problematics in formulation of wind force models for bridge decks. J Eng Mech 119(7):1353–1375. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:7(1353)

    Article  Google Scholar 

  70. Bartoli G, Contri S, Mannini C, Righi M (2009) Toward an improvement in the identification of bridge deck flutter derivatives. J Eng Mech 135(8):771–785. https://doi.org/10.1061/(ASCE)0733-9399(2009)135:8(771)

    Article  Google Scholar 

  71. Tezduyar TE (2001) Finite element interface-tracking and interface-capturing techniques for flows with moving boundaries and interfaces. In: Proceedings of the ASME symposium on fluid-physics and heat transfer for macro- and micro-scale gas-liquid and phase-change flows (CD-ROM), ASME Paper IMECE2001/HTD-24206, ASME, New York, New York

  72. Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193(21–22):2019–2032. https://doi.org/10.1016/j.cma.2003.12.046

    Article  MATH  Google Scholar 

  73. Hsu MC, Akkerman I, Bazilevs Y (2011) High-performance computing of wind turbine aerodynamics using isogeometric analysis. Comput Fluids 49(1):93–100. https://doi.org/10.1016/j.compfluid.2011.05.002

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was carried out with financial support from the Norwegian Public Roads Administration. All simulations were performed on resources provided by UNINETT Sigma2 - the National Infrastructure for High Performance Computing and Data Storage in Norway. YB was partially supported through AFOSR Award No. FA9550-16-1-0131. The authors greatly acknowledge this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tore A. Helgedagsrud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helgedagsrud, T.A., Bazilevs, Y., Mathisen, K.M. et al. Computational and experimental investigation of free vibration and flutter of bridge decks. Comput Mech 63, 121–136 (2019). https://doi.org/10.1007/s00466-018-1587-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-018-1587-4

Keywords

Navigation