Skip to main content
Log in

Proper orthogonal decomposition and Monte Carlo based isogeometric stochastic method for material, geometric and force multi-dimensional uncertainties

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper develops a proper orthogonal decomposition (POD) and Monte Carlo simulation (MCS) based isogeometric stochastic method for multi-dimensional uncertainties. The geometry of the structure is exactly represented and more accurate deterministic solutions are provided via isogeometric analysis (IGA). Secondly, we innovatively tackle multi-dimensional uncertainties, including separate material, geometric and force randomness, and their combined cases. Thirdly, MCS is employed to solve the multi-dimensional uncertainty problem. However, we significantly decrease its huge computational burden whilst keeping its universality and accuracy at the same time. This is accomplished by coupling POD with MCS in the IGA stochastic analysis. Namely, we reduce the full order system whose DOFs is N to a much smaller DOF s. Several examples validate that the proposed scheme is general, effective and efficient; and the larger the scale and/or the number of the samples of the problem, the more advantageous the method will inherit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kleiber M, Hien TD (1992) The stochastic finite element method. Wiley, New York

    MATH  Google Scholar 

  2. Stefanou G (2009) The stochastic finite element method: past, present and future. Comput Methods Appl Mech Eng 198:1031–1051

    Article  MATH  Google Scholar 

  3. Oden JT, Belytschko T, Babuška I, Hughes TJR (2003) Research directions in computational mechanics. Comput Methods Appl Mech Eng 192:913–922

    Article  MathSciNet  MATH  Google Scholar 

  4. Kiureghian AD, Ke JB (1988) The stochastic finite element in structure reliability. Probab Eng Mech 3:83–91

    Article  Google Scholar 

  5. Schuëller GI (2006) Developments in stochastic structural mechanics. Arch Appl Mech 75:755–773

    Article  MATH  Google Scholar 

  6. Argyris J, Papadrakakis M, Stefanou G (2002) Stochastic finite element analysis of shells. Comput Methods Appl Mech Eng 191:4781–4804

    Article  MATH  Google Scholar 

  7. Popescu R, Deodatis G, Nobahar A (2005) Effects of random heterogeneity of soil properties on bearing capacity. Probab Eng Mech 20:324–341

    Article  Google Scholar 

  8. Long XY, Jiang C, Han X, Gao W (2015) Stochastic response analysis of the scaled boundary finite element method and application to probabilistic fracture mechanics. Comput Struct 153:185–200

    Article  Google Scholar 

  9. Jiang C, Long XY, Han X, Tao YR, Liu J (2013) Probability-interval hybrid reliability analysis for cracked structures existing epistemic uncertainly. Eng Fract Mech 112–113:148–164

    Google Scholar 

  10. Liu GR, Zeng W, Nguyen-Xuan H (2013) Generalized stochastic cell-based smoothed finite element method (GS_CS-FEM) for solid mechanics. Finite Elem Anal Des 63:51–61

    Article  MathSciNet  MATH  Google Scholar 

  11. Hua XB, Cui XY, Feng H, Li GY (2016) Stochastic analysis using the generalized perturbation stable node-based smoothed finite element method. Eng Anal Bound Elem 70:40–55

    Article  MathSciNet  MATH  Google Scholar 

  12. Rahman S, Rao BN (2001) A perturbation method for stochastic meshless analysis in elastostatics. Int J Numer Methods Eng 50:1969–1991

    Article  MATH  Google Scholar 

  13. Arun CO, Rao BN, Srinivasan SM (2010) Stochastic meshfree method for elasto-plastic damage analysis. Comput Methods Appl Mech Eng 199:2590–2606

    Article  MathSciNet  MATH  Google Scholar 

  14. Kaminski M (1999) Stochastic second order perturbation BEM formulation. Eng Anal Bound Elem 2:123–130

    Article  MATH  Google Scholar 

  15. Kaminski M (2001) tochastic perturbation approach in vibration analysis using finite difference method. J Sound Vib 251(4):651–670

    Article  Google Scholar 

  16. Hien TD, Noh HC (2017) Stochastic isogeometric analysis of free vibration of functionally graded plates considering material randomness. Comput Methods Appl Mech Eng 318:845–863

    Article  MathSciNet  Google Scholar 

  17. Ghanem RG, Spanos PD (1991) Stochastic finite elements: a spectral approach. Springer, Berlin

    Book  MATH  Google Scholar 

  18. Ghanem R (1999) Ingredients for a general purpose stochastic finite elements implementation. Comput Methods Appl Mech Eng 16:819–834

    MathSciNet  MATH  Google Scholar 

  19. Chen NZ, Soares CG (2008) Spectral stochastic finite element analysis for laminated composite plates. Comput Methods Appl Mech Eng 197:4830–4839

    Article  MATH  Google Scholar 

  20. Yimin Z, Chen S, Liu Q, Liu T (1996) Stochastic perturbation finite elements. Comput Struct 59:425–429

    Article  MATH  Google Scholar 

  21. Kamiki M (2007) generalized perturbation-based stochastic finite element method in elastostatics. Comput Struct 85:586–594

    Article  Google Scholar 

  22. Kamiki M (2013) The stochastic perturbation method for computational mechanics. Wiley, New York

    Book  Google Scholar 

  23. Hurtado JE, Barbat AH (1998) Monte-Carlo techniques in computational stochastic mechanics. Arch Comput Methods Eng 5(1):3

    Article  MathSciNet  Google Scholar 

  24. Spanos PD, Zeldin BA (1998) Monte Carlo treatment of random fields: a broad perspective. Appl Mech Rev 51:219–237

    Article  Google Scholar 

  25. Schuëller GI, Pradlwarter HJ, Koutsourelakis PS (2004) A critical appraisal of reliability estimation procedures for high dimensions. Prob Eng Mech 19:463–474

    Article  Google Scholar 

  26. Hammersley JM (1960) Monte Carlo methods for solving multivariable problems. Ann N Y Acad Sci 86:844–874

    Article  MathSciNet  MATH  Google Scholar 

  27. Feng YT, Li CF, Owen DRJ (2010) A directed Monte Carlo solution of linear stochastic algebraic system of equations. Finite Elem Anal Des 46:462–473

    Article  MathSciNet  Google Scholar 

  28. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, New York

    Book  MATH  Google Scholar 

  29. Martino TD, Falcidieno B, Hassinger S (1998) Design and engineering process integration through a multiple view intermediate modeller in a distributed object-oriented system environment. Comput Aided Des 30:437–452

    Article  Google Scholar 

  30. Reddy JM, Turkiyyah GM (1995) Computation of 3D skeletons using a generalized Delaunay triangulation technique. Comput Aided Des 27:677–694

    Article  MATH  Google Scholar 

  31. Le SH (2005) A CAD–CAE integration approach using feature-based multi-resolution and multi-abstraction modelling techniques. Comput Aided Des 37:941–995

    Article  Google Scholar 

  32. Wang H, Zeng Y, Li E, Huang G, Gao G, Li G (2016) “Seen Is Solution” a CAD/CAE integrated parallel reanalysis design system. Comput Methods Appl Mech Eng 299:187–214

    Article  MathSciNet  MATH  Google Scholar 

  33. Eiermann M, Ernst O, Ullmann E (2007) Computational aspects of the stochastic finite element method. Comput Vis Sci 10(1):3–15

    Article  MathSciNet  MATH  Google Scholar 

  34. Hurtado JE, Barbat AH (1998) Monte Carlo techniques in computational stochastic mechanics. Arch Comput Method Eng 5(1):3–29

    Article  MathSciNet  Google Scholar 

  35. Papadrakakis M, Kotsopulos A (1999) Parallel solution methods for stochastic finite element analysis using Monte Carlo simulation. Comput Methods Appl Mech 168(1–4):305–320

    Article  MATH  Google Scholar 

  36. Arregui-Mena JD, Margetts L, Mummery PM (2016) Practical application of the stochastic finite element method. Arch Comput Methods Eng 23(1):171–190

    Article  MathSciNet  MATH  Google Scholar 

  37. Asprone D, Auricchio F, Menna C, Morganti S, Prota A, Reali A (2013) Statistical finite element analysis of the buckling behavior of honeycomb structures. Compos Struct 105:240–255

    Article  Google Scholar 

  38. Geißendörfer M, Liebscher A, Proppe C, Redenbach C, Schwarzer D (2014) Stochastic multiscale modeling of metal foams. Probab Eng Mech 37:132–137

    Article  Google Scholar 

  39. Qian XP (2010) Full analytical sensitivities in NURBS based isogeometric shape optimization. Comput Methods Appl Mech Eng 199:2059–2071

    Article  MathSciNet  MATH  Google Scholar 

  40. Ding CS, Cui XY, Li GY (2016) Accurate analysis and thickness optimization of tailor rolled blanks based on isogeometric analysis. Struct Multidiscip Optim 54:871–887

    Article  MathSciNet  Google Scholar 

  41. Nielsen PN, Gersborg AR, Gravesen J, Pedersen NL (2011) Discretizations in isogeometric analysis of Navier–Stokes flow. Comput Methods Appl Mech Eng 200(45–46):3242–3253

    Article  MathSciNet  MATH  Google Scholar 

  42. Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38(4–5):310–322

    Article  MathSciNet  MATH  Google Scholar 

  43. Lorenzis LD, Temizer I, Wriggers P, Zavarise GA (2011) large deformation frictional contact formulation using NURBS-based isogeometric analysis. Int J Numer Methods Eng 87(13):1278–1300

    MathSciNet  MATH  Google Scholar 

  44. Temizer I, Wriggers P, Hughes TJR (2011) Contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 200(9–12):1100–1112

    Article  MathSciNet  MATH  Google Scholar 

  45. Verhoosel CV, Scott MA, Hughes TJR, Borst DR (2011) An isogeometric analysis approach to gradient damage models. Int J Numer Methods Eng 86(1):115–134

    Article  MathSciNet  MATH  Google Scholar 

  46. Pasetto D, Guadagnini A, Putti M (2014) A reduced-order model for Monte Carlo simulations of stochastic groundwater flow. Computat Geosci 18:157–169

    Article  MathSciNet  MATH  Google Scholar 

  47. Sirovich L (1987) Turbulence and the dynamics of coherent structures. I–III. Q Appl Math 45(3):561–590

    Article  MathSciNet  MATH  Google Scholar 

  48. Schilders WH, Van der Vorst HA, Rommes J (2008) Model order reduction: theory, research aspects and applications, vol 13. Springer, Berlin

    Book  MATH  Google Scholar 

  49. Rozza G, Huynh DBP, Patera AT (2008) Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch Comput Methods Eng 15:1–47

    Article  MathSciNet  MATH  Google Scholar 

  50. Chinesta F, Ladeveze P, Cueto E (2011) A short review on model order reduction based on proper generalized decomposition. Arch Comput Methods Eng 18:395–404

    Article  Google Scholar 

  51. Ern A, Perotto S, Veneziani A (2008) Hierarchical model reduction for advection-diffusion-reaction problems. In: Kunisch K, Of G, Steinbach O (eds) Numerical mathematics and advanced applications. Springer, Berlin, pp 703–710

    Chapter  Google Scholar 

  52. Quarteroni A, Rozza G (2014) Reduced order methods for modeling and computational reduction. Springer, Berlin

    Book  MATH  Google Scholar 

  53. Pearson K (1901) On lines and planes of closest to points in space. Philos Mag 2:559–572

    Article  MATH  Google Scholar 

  54. Karhunen K (1946) Zur Spektraltheorie stochastischer Prozesse. Ann Acad Sci Fennicae Ser A I Math Phys 34:7

    MathSciNet  MATH  Google Scholar 

  55. Hoetelling H (1935) Simplified calculation of principal component analysis. Psychometrica 1:417–444

    Google Scholar 

  56. Karhunen J (1998) Principal component neural networks—theory and applications. Pattern Anal Appl 1(1):74–75

    Article  Google Scholar 

  57. Volkwein S (2013) Proper orthogonal decomposition: theory and reduced-order modelling, lecture notes. University of Konstanz, Konstanz

    Google Scholar 

  58. Cazemier W (1997) Proper orthogonal decomposition and low dimensional models for turbulent flows. University of Groningen, Groningen

    Google Scholar 

  59. Sharkady MT, Cusumano JP, Kimble BW (1994) Experimental measurements of dimensionality and spatial coherence in the dynamics of a flexible-beam impact oscillator. Philos Trans R Soc Lond Ser A Phys Eng Sci 347:421–438

    Article  Google Scholar 

  60. Kappagantu R, Feeny BF (1999) An “optimal” modal reduction of a system with frictional excitation. J Sound Vib 224(5):863–877

    Article  Google Scholar 

  61. Willcox K, Peraire J (2002) Balanced model reduction via the proper orthogonal decomposition. AIAA 40(11):2323–2330

    Article  Google Scholar 

  62. Keinosuke F (1990) Introduction to statistical pattern recognition. Computer science and scientific computing, 2nd edn. Academic Press Inc., Boston

    MATH  Google Scholar 

  63. Kunisch K, Volkwein S (2001) Galerkin proper orthogonal decomposition methods for parabolic problems. Numer Math 90(1):117–148

    Article  MathSciNet  MATH  Google Scholar 

  64. Kunisch K, Volkwein S (2002) Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J Numer Anal 40(2):492–515

    Article  MathSciNet  MATH  Google Scholar 

  65. Timoshenko SP, Goodier JN (1970) Theory of elasticity, 3rd edn. McGraw-Hill, New York

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2017YFB1002704), National Science Foundation of China (11472101) and China Scholarship Council (201606130079).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangyang Cui or Kumar K. Tamma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, C., Deokar, R.R., Cui, X. et al. Proper orthogonal decomposition and Monte Carlo based isogeometric stochastic method for material, geometric and force multi-dimensional uncertainties. Comput Mech 63, 521–533 (2019). https://doi.org/10.1007/s00466-018-1607-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-018-1607-4

Keywords

Navigation