Skip to main content

Advertisement

Log in

The renin–angiotensin–aldosterone system in 2011: role in hypertension and chronic kidney disease

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Over the past two decades, considerable advances have been made in our understanding of the renin–angiotensin–aldosterone system (RAAS) and its roles in various disease states. In this review, we will discuss the current state of knowledge of the many components of the RAAS, including new data on prorenin and its receptors, and important angiotensin fragments. The roles of these components of the RAAS in the pathogenesis of primary hypertension and the progression of chronic kidney disease (CKD) will also be highlighted. Given the new understanding of the many components and roles of the RAAS, it may be possible to develop improved therapies for hypertension and CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Phillips MI, Schmidt-Ott KM (1999) The discovery of renin 100 years ago. News Physiol Sci 14:271–274

    PubMed  CAS  Google Scholar 

  2. Basso N, Terragno NA (2001) History about the discovery of the renin-angiotensin system. Hypertension 38:1246–1249

    Article  PubMed  CAS  Google Scholar 

  3. Taquini AC Jr, Taquini AC (1961) The renin-angiotensin system in hypertension. Am Heart J 62:558–564

    Article  PubMed  Google Scholar 

  4. Gavras H, Brunner HR, Laragh JH, Sealey JE, Gavras I, Vukovich RA (1974) An angiotensin converting-enzyme inhibitor to identify and treat vasoconstrictor and volume factors in hypertensive patients. N Engl J Med 291:817–821

    Article  PubMed  CAS  Google Scholar 

  5. Streeten DHP, Anderson GH, Freiberg JM, Dalakos TG (1975) Use of an angiotensin II antagonist (Saralasin) in the recognition of angiotensinogenic hypertension. N Engl J Med 292:657–662

    Article  PubMed  CAS  Google Scholar 

  6. Griendling KK, Murphy TJ, Alexander RW (1993) Molecular biology of the renin-angiotensin system. Circulation 87:1816–1828

    Article  PubMed  CAS  Google Scholar 

  7. Esther CR, Marino EM, Howard TE, Machaud A, Corvol P, Capecchi MR, Bernstein KE (1997) The critical role of tissue angiotensin-converting enzyme as revealed by gene targeting in mice. J Clin Invest 99:2375–2385

    Article  PubMed  CAS  Google Scholar 

  8. Mukoyama M, Nakajima M, Horiuchi M, Sasamura H, Pratt RE, Dzau VJ (1993) Expression cloning of type 2 angiotensin II receptor reveals a unique class of seven-transmembrane receptors. J Biol Chem 268:24539–24542

    PubMed  CAS  Google Scholar 

  9. Iwai N, Inagami T (1992) Identification of two subtypes in the rat type I angiotensin II receptor. FEBS Lett 298:257–260

    Article  PubMed  CAS  Google Scholar 

  10. Yamaguchi I, Flynn JT (2009) Pathophysiology of hypertension. In: Avner E, Harmon W, Niaudet P, Yoshikawa N (eds) Pediatric nephrology, 6th edn. Lippincott Williams and Wilkins, Philadelphia, PA, pp 1485–1518

    Chapter  Google Scholar 

  11. Santos RA, Ferreira AJ, Simões e Silva AC (2008) Angiotensins. In: Bader M (ed) Cardiovascular hormone systems: from molecular mechanisms to novel therapeutics, 1st edn. Wiley-VCH, Weinheim, pp 67–100

    Google Scholar 

  12. Lavoie JL, Sigmund CD (2003) Minireview: overview of the renin-angiotensin system—an endocrine and paracrine system. Endocrinology 144:2179–2183

    Article  PubMed  CAS  Google Scholar 

  13. Ganten D, Marquez-Julio A, Granger P, Hayduk K, Karsunky KP, Boucher R, Genest J (1971) Renin in dog brain. Am J Physiol 221:1733–1737

    PubMed  CAS  Google Scholar 

  14. Miyazaki M, Takai S (2006) Tissue angiotensin II generating system by angiotensin-converting enzyme and chymase. J Pharmacol Sci 100:391–397

    Article  PubMed  CAS  Google Scholar 

  15. Spät A, Hunyady L (2004) Control of aldosterone secretion: a model for convergence in cellular signaling pathways. Physiol Rev 84:489–539

    Article  PubMed  Google Scholar 

  16. Sernia C (2001) A critical appraisal of the intrinsic pancreatic angiotensin-generating system. J Pancreas 2:50–55

    CAS  Google Scholar 

  17. Nielsen AH, Schauser KH, Poulsen K (2000) Current topic: the uteroplacental renin-angiotensin system. Placenta 21:468–477

    Article  PubMed  CAS  Google Scholar 

  18. Santos RA, Ferreira AJ, Simões e Silva AC (2008) Recent advances in the mammalian angiotensin-converting enzyme 2- angiotensin-(1–7)-Mas axis. Exp Physiol w93:519–527

    Article  Google Scholar 

  19. Albiston AL, McDowall SG, Matsacos D, Sim P, Clune E, Mustafa T, Lee J, Mendelsohn FA, Simpson RJ, Connolly LM, Chai SY (2004) Evidence that the angiotensin IV (AT(4)) receptor is the enzyme insulin-regulated aminopeptidase. J Biol Chem 276:48623–48626

    Article  Google Scholar 

  20. Santos RAS, Simoes e Silva AC, Maric C, Silva DM, Machado RP, de Buhr I, Heringer-Walther S, Pinheiro SV, Lopes MT, Bader M, Mendes EP, Lemos VS, Campagnole-Santos MJ, Schultheiss HP, Speth R, Walther T (2003) Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA 100:8258–8263

    Article  PubMed  CAS  Google Scholar 

  21. Nguyen G, Delarue F, Burckle C, Bouzhir L, Giller T, Sraer JD (2002) Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest 109:1417–1427

    PubMed  CAS  Google Scholar 

  22. Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R, Breitbart RE, Acton S (2000) A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res 87:E1–E9

    Article  PubMed  CAS  Google Scholar 

  23. Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ (2000) A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 275:33238–33243

    Article  PubMed  CAS  Google Scholar 

  24. Kohlstedt K, Brandes RP, Muller-Esterl W, Busse R, Fleming I (2004) Angiotensin-converting enzyme is involved in outside-in signaling in endothelial cells. Circ Res 94:60–67

    Article  PubMed  CAS  Google Scholar 

  25. Abdalla S, Lother H, Quitterer U (2000) AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration. Nature 407:94–98

    Article  PubMed  CAS  Google Scholar 

  26. Staessen JA, Li Y, Richart T (2006) Oral renin inhibitors. Lancet 368:1449–1456

    Article  PubMed  CAS  Google Scholar 

  27. Nguyen G, Muller DN (2010) The biology of the (pro)renin receptor. J Am Soc Nephrol 21:18–23

    Article  PubMed  CAS  Google Scholar 

  28. Nguyen G (2011) Renin, (pro)renin and receptor: an update. Clin Sci (Lond) 120:169–178

    Article  CAS  Google Scholar 

  29. Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, Godbout K, Parsons T, Baronas E, Hsieh F, Acton S, Patane M, Nichols A, Tummino P (2002) Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem 277:14838–14843

    Article  PubMed  CAS  Google Scholar 

  30. Oudit GY, Herzenberg AM, Kassiri Z, Wong D, Reich H, Khokha R, Crackower MA, Backx PH, Penninger JM, Scholey JW (2006) Loss of angiotensin-converting enzyme-2 leads to the late development of angiotensin II-dependent glomerulosclerosis. Am J Pathol 168:1808–1820

    Article  PubMed  CAS  Google Scholar 

  31. Wysocki J, Ye M, Soler MJ, Gurley SB, Xiao HD, Bernstein KE, Coffman TM, Chen S, Batlle D (2006) ACE and ACE2 activity in diabetic mice. Diabetes 55:2132–2139

    Article  PubMed  CAS  Google Scholar 

  32. Ye M, Wysocki J, William J, Soler MJ, Cokic I, Batlle D (2006) Glomerular localization and expression of Angiotensin-converting enzyme 2 and Angiotensin-converting enzyme: implications for albuminuria in diabetes. J Am Soc Nephrol 17:3067–3075

    Article  PubMed  CAS  Google Scholar 

  33. Wong DW, Oudit GY, Reich H, Kassiri Z, Zhou J, Liu QC, Backx PH, Penninger JM, Herzenberg AM, Scholey JW (2007) Loss of angiotensin-converting enzyme-2 (Ace2) accelerates diabetic kidney injury. Am J Pathol 171:438–451

    Article  PubMed  CAS  Google Scholar 

  34. Soler MJ, Wysocki J, Ye M, Lloveras J, Kanwar Y, Batlle D (2007) ACE2 inhibition worsens glomerular injury in association with increased ACE expression in streptozotocin-induced diabetic mice. Kidney Int 72:614–623

    Article  PubMed  CAS  Google Scholar 

  35. Dilauro M, Zimpelmann J, Robertson SJ, Genest D, Burns KD (2010) Effect of ACE2 and angiotensin-(1–7) in a mouse model of early chronic kidney disease. Am J Physiol Renal Physiol 298:F1523–F1532

    Article  PubMed  CAS  Google Scholar 

  36. Silveira KD, Pompermayer Bosco KS, Diniz LR, Carmona AK, Cassali GD, Bruna-Romero O, de Sousa LP, Teixeira MM, Santos RA, Simões e Silva AC, Ribeiro Vieira MA (2010) ACE2-angiotensin-(1–7)-Mas axis in renal ischaemia/reperfusion injury in rats. Clin Sci (Lond) 119:385–394

    Article  Google Scholar 

  37. Ferrario CM (2011) ACE2: more of Ang-(1–7) or less Ang II? Curr Opin Nephrol Hypertens 20:1–6

    Article  PubMed  CAS  Google Scholar 

  38. Santos RAS, Brosnihan KB, Chappell MC, Pesquero J, Chernicky CL, Greene LJ, Ferrario CM (1998) Converting enzyme activity and angiotensin metabolism in the dog brainstem. Hypertension 11:I153–I157

    Google Scholar 

  39. Schiavone MT, Santos RAS, Brosnihan KB, Khosla MC, Ferrario CM (1988) Release of vasopressin from the rat hypothalamo-neurohypophysial system by angiotensin-(1–7) heptapeptide. Proc Natl Acad Sci USA 85:4095–4098

    Article  PubMed  CAS  Google Scholar 

  40. Campagnole-Santos MJ, Diz DI, Santos RAS, Khosla MC, Brosnihan KB, Ferrario CM (1989) Cardiovascular effects of angiotensin-(1–7) injected into the dorsal medulla of rats. Am J Physiol 257:H324–H329

    PubMed  CAS  Google Scholar 

  41. Sampaio WO, Nascimento AA, Santos RAS (2003) Systemic and regional hemodynamics effects of angiotensin-(1–7) in rats. Am J Physiol 284:H1985–H1994

    CAS  Google Scholar 

  42. Mostard GJM, Houben AJHM, Kroon AA, van Engelshoven JMA, de Leeuw PW (2007) Angiotensin 1–7 induces renal vasodilation in hypertensive patients independent of an activated renin-angiotensin system [abstract]. Hypertension 50:804

    Google Scholar 

  43. Botelho-Santos GA, Sampaio WO, Reudelhuber TL, Bader M, Campagnole-Santos MJ, Santos RAS (2007) Expression of an angiotensin-(1–7)-producing fusion protein in rats induced marked changes in regional vascular resistance. Am J Physiol Heart Circ Physiol 292:H2485–H2490

    Article  PubMed  CAS  Google Scholar 

  44. Ren Y, Garvin JL, Carretero OA (2002) Vasodilator action of angiotensin-(1–7) on isolated rabbit afferent arterioles. Hypertension 39:799–802

    Article  PubMed  CAS  Google Scholar 

  45. Andreatta-van Leyen S, Romero MF, Khosla MC, Douglas JG (1993) Modulation of phospholipase A2 activity and sodium transport by angiotensin-(1–7). Kidney Int 44:932–936

    Article  PubMed  CAS  Google Scholar 

  46. Handa RK (1999) Angiotensin-(1–7) can interact with the rat proximal tubule AT(4) receptor system. Am J Physiol 277:F75–F83

    PubMed  CAS  Google Scholar 

  47. DelliPizzi AM, Hilchey SD, Bell-Quilley CP (1994) Natriuretic action of angiotensin(1–7). Br J Pharmacol 111:1–3

    Article  PubMed  CAS  Google Scholar 

  48. Lara LS, Vives D, Correa JS, Cardozo FP, Marques-Fernades MF, Lopes AG, Caruso-Neves C (2010) PKA-mediated effect of MAS receptor in counteracting angiotensin II-stimulated renal Na + −ATPase. Arch Biochem Biophys 496:117–22

    Article  PubMed  CAS  Google Scholar 

  49. Santos RAS, Simões e Silva AC, Magaldi AJ, Khosla MC, Cesar KR, Passaglio KT, Baracho NC (1996) Evidence for a physiologic role of angiotensin-(1–7) in the control of hydroelectrolyte balance. Hypertension 27:875–884

    Article  PubMed  CAS  Google Scholar 

  50. Simões e Silva AC, Baracho NCV, Passaglio KT, Santos RAS (1997) Renal actions of Angiotensin-(1–7). Braz J Med Biol Res 30:503–513

    Article  PubMed  Google Scholar 

  51. Magaldi AJ, Cesar KR, Araujo M, Simões e Silva AC, Santos RAS (2003) Angiotensin-(1–7) stimulates water transport in rat inner medullary collecting duct: evidence for involvement of vasopressin V2 receptors. Pflugers Arch 447:223–230

    Article  PubMed  CAS  Google Scholar 

  52. Simões e Silva AC, Bello APC, Baracho NCV, Khosla MC, Santos RAS (1998) Diuresis and natriuresis produced by long term administration of a selective angiotensin-(1–7) antagonist in normotensive and hypertensive rats. Regul Pept 74:177–184

    Article  PubMed  Google Scholar 

  53. Santos RA, Haibara AS, Campagnole-Santos MJ, Simões e Silva AC, Paula RD, Pinheiro SVB, Leite MF, Lemos VS, Silva DR, Guerra MT, Khosla MC (2003) Characterization of a new selective antagonist for Angiotensin-(1–7), D-Pro7–Angiotensin-(1–7). Hypertension 41:737–743

    Article  PubMed  CAS  Google Scholar 

  54. Pinheiro SV, Simões e Silva AC, Sampaio WO, Paula RD, Mendes EP, Bontempo ED, Pesquero JB, Walther T, Alenina N, Bader M, Bleich M, Santos RAS (2004) Nonpeptide AVE 0991 is an angiotensin-(1–7) receptor Mas agonist in the mouse kidney. Hypertension 44:490–496

    Article  PubMed  CAS  Google Scholar 

  55. Pinheiro SV, Ferreira AJ, Kitten GT, Silveira KD, Silva DA, Santos SH, Gava E, Castro CH, Magalhaes JA, Mota RK, Botelho-Santos GA, Bader M, Alenina N, Santos RA, Simões e Silva AC (2009) Genetic deletion of the angiotensin-(1–7) receptor Mas leads to glomerular hyperfiltration and microalbuminuria. Kidney Int 75:1184–1193

    Article  PubMed  CAS  Google Scholar 

  56. Esteban V, Heringer-Walther S, Sterner-Kock A, de Bruin R, van den Engel S, Wang Y, Mezzano S, Egido J, Schultheiss HP, Ruiz-Ortega M, Walther T (2009) Angiotensin-(1–7) and the G protein-coupled receptor Mas are key players in renal inflammation. PLoS One 4:e5406

    Article  PubMed  Google Scholar 

  57. Zhang J, Noble NA, Border WA, Huang Y (2010) Infusion of angiotensin-(1–7) reduces glomerulosclerosis through counteracting angiotensin II in experimental glomerulonephritis. Am J Physiol Renal Physiol 298:F579–F588

    Article  PubMed  CAS  Google Scholar 

  58. Velkoska E, Dean RG, Griggs K, Burchil LJ, Burrell LM (2011) Angiotensin 1–7 infusion is associated with increased blood pressure and adverse cardiac remodeling in rats with subtotal nephrectomy. Clin Sci (Lond) 120:335–345

    Article  CAS  Google Scholar 

  59. Su Z, Zimpelmann J, Burns KD (2006) Angiotensin-(1–7) inhibits angiotensin II-stimulated phosphorylation of MAP kinases in proximal tubular cells. Kidney Int 69:2212–2218

    Article  PubMed  CAS  Google Scholar 

  60. Zimpelmann J, Burns KD (2009) Angiotensin-(1–7) activates growth stimulatory pathways in human mesangial cells. Am J Physiol Renal Physiol 296:F337–346

    Article  PubMed  CAS  Google Scholar 

  61. van der Wouden EA, Ochodnick P, van Dokkum RP, Roks AJ, Deelman LE, de Zeeuw D, Henning RH (2006) The role of angiotensin(1–7) in renal vasculature of the rat. J Hypertens 24:1971–1978

    Article  PubMed  Google Scholar 

  62. Ocaranza MP, Godoy I, Jalil JE, Varas M, Collantes P, Pinto M, Roman M, Ramirez C, Copaja M, Diaz-Araya G, Castro P, Lavandero S (2006) Enalapril attenuates downregulation of Angiotensin-converting enzyme 2 in the late phase of ventricular dysfunction in myocardial infarcted rat. Hypertension 48:572–578

    Article  PubMed  CAS  Google Scholar 

  63. Rice GI, Thomas DA, Grant PJ, Turner AJ, Hooper NM (2004) Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J 383:45–51

    Article  PubMed  CAS  Google Scholar 

  64. Kramkowski K, Mogielnicki A, Buczko W (2006) The physiologic significance of the alternative pathways of angiotensin II production. J Physiol Pharmacol 57:529–539

    PubMed  CAS  Google Scholar 

  65. Li N, Zimpelmann J, Cheng K, Wilkins JA, Burns KD (2005) The role of angiotensin converting enzyme 2 in the generation of angiotensin 1–7 by rat proximal tubules. Am J Physiol Renal Physiol 288:F353–F362

    Article  PubMed  CAS  Google Scholar 

  66. Velez JC, Bland AM, Arthur JM, Raymond JR, Janech MG (2007) Characterization of renin-angiotensin system enzyme activities in cultured mouse podocytes. Am J Physiol Renal Physiol 293:F398–F407

    Article  PubMed  CAS  Google Scholar 

  67. Jackman HL, Massad MG, Sekosan M, Tan F, Brovkovych V, Marcic BM, Erdos EG (2002) Angiotensin 1–9 and 1–7 release in human heart: role of cathepsin A. Hypertension 39:976–981

    Article  PubMed  CAS  Google Scholar 

  68. Mogielnicki A, Kramkowski K, Chabielska E, Buczko W (2003) Angiotensin 1–9 influences hemodynamics and hemostatics parameters in rats. Pol J Pharmacol 55:503–504

    Google Scholar 

  69. Kramkowski K, Mogielnicki A, Leszczynska A, Buczko W (2010) Angiotensin-(1–9), the product of angiotensin I conversion in platelets, enhances arterial thrombosis in rats. J Physiol Pharmacol 61:317–324

    PubMed  CAS  Google Scholar 

  70. Karwowska-Polecka W, Kulakowska A, Wisniewski K, Braszko JJ (1997) Losartan influences behavioural effects of angiotensin II(3–7) in rats. Pharmacol Res 36:275–283

    Article  PubMed  CAS  Google Scholar 

  71. Ferreira PM, Santos RAS, Campagnole-Santos MJ (2007) Angiotensin-(3–7) pressor effect at the rostral ventrolateral medulla. Regul Pept 141:168–174

    Article  PubMed  CAS  Google Scholar 

  72. Jankowski V, Vanholder R, van der Giet M, Tolle M, Karadogan S, Gobom J, Furkert J, Oksche A, Krause E, Tran TN, Tepel M, Schuchardt M, Schluter H, Wiedon A, Beyermann M, Bader M, Todiras M, Zidek W, Jankowski J (2007) Mass-spectrometric identification of a novel angiotensin peptide in human plasma. Arterioscler Thromb Vasc Biol 27:297–302

    Article  PubMed  CAS  Google Scholar 

  73. Nagata S, Kato J, Sasaki K, Minamino N, Eto T, Kitamura K (2006) Isolation and identification of proangiotensin-12, a possible component of the renin-angiotensin system. Biochem Biophys Res Comm 350:1026–1031

    Article  PubMed  CAS  Google Scholar 

  74. Isa K, García-Espinosa MA, Arnold AC, Pirro NT, Tommasi EN, Ganten D, Chappell MC, Ferrario CM, Diz DI (2009) Chronic immunoneutralization of brain angiotensin-(1–12) lowers blood pressure in transgenic (mRen2)27 hypertensive rats. Am J Physiol Regul Integr Comp Physiol 297:R111–R115

    Article  PubMed  CAS  Google Scholar 

  75. Ferrario CM, Varagic J, Habibi J, Nagata S, Kato J, Chappell MC, Trask AJ, Kitamura K, Whaley-Connell A, Sowers JR (2009) Differential regulation of angiotensin-(1–12) in plasma and cardiac tissue in response to bilateral nephrectomy. Am J Physiol Heart Circ Physiol 296:H1184–H1192

    Article  PubMed  CAS  Google Scholar 

  76. Ahmad S, Varagic J, Westwood BM, Chappell MC, Ferrario CM (2011) Uptake and metabolism of the novel Peptide Angiotensin-(1–12) by neonatal cardiac myocytes. PLoS One 6:e15759

    Article  PubMed  CAS  Google Scholar 

  77. Kohara K, Brosnihan KB, Ferrario CM (1993) Angiotensin-(1–7) in the spontaneously hypertensive rat. Peptides 14:883–891

    Article  PubMed  CAS  Google Scholar 

  78. Campbell DJ, Duncan AM, Kladis A, Harrap SB (1995) Angiotensin peptides in spontaneously hypertensive and normotensive donryu rats. Hypertension 25:928–934

    Article  PubMed  CAS  Google Scholar 

  79. Ferrario CM, Martell N, Yunis C, Flack JM, Chappell MC, Brosnihan KB, Dean RH, Fernandez A, Novikov SV, Pinillas C, Luque M (1998) Characterization of angiotensin-(1–7) in the urine of normal and essential hypertensive subjects. Am J Hypertens 11:137–146

    Article  PubMed  CAS  Google Scholar 

  80. Simões e Silva AC, Diniz JSS, Regueira Filho A, Santos RAS (2004) The Renin Angiotensin System in childhood hypertension: selective increase of Angiotensin-(1–7) in essential hypertension. J Pediatr 145:93–98

    Article  PubMed  Google Scholar 

  81. Mizuiri S, Hemmi H, Arita M, Aoki T, Ohashi Y, Miyagi M, Sakai K, Shibuya K, Hase H, Aikawa A (2011) Increased ACE and decreased ACE2 expression in kidneys from patients with IgA nephropathy. Nephron Clin Pract 117:c57–c66

    Article  PubMed  CAS  Google Scholar 

  82. Simões e Silva AC, Diniz JS, Pereira RM, Pinheiro SV, Santos RAS (2006) Circulating renin angiotensin system in childhood chronic renal failure: marked increase of angiotensin-(1–7) in end-stage renal disease. Pediatr Res 60:734–739

    Article  PubMed  Google Scholar 

  83. Luque M, Martin P, Martell N, Fernandez C, Brosnihan KB, Ferrario CM (1996) Effects of captopril related to increased levels of prostacyclin and angiotensin-(1–7) in essential hypertension. J Hypertens 14:799–805

    Article  PubMed  CAS  Google Scholar 

  84. Azizi M, Ménard J (2004) Combined blockade of the renin angiotensin system with angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor antagonists. Circulation 109:2492–2499

    Article  PubMed  Google Scholar 

  85. Kocks MJ, Lely AT, Boomsma F, de Jong PE, Navis G (2005) Sodium status and angiotensin-converting enzyme inhibition: effects on plasma angiotensin-(1–7) in healthy man. J Hypertens 23:597–602

    Article  PubMed  CAS  Google Scholar 

  86. Fernandes L, Fortes ZB, Casarini DE, Nigro D, Tostes RC, Santos RA, de Carvalho MH (2005) Role of PGI2 and effects of ACE inhibition on the bradykinin potentiation by angiotensin-(1–7) in resistance vessels of SHR. Regul Pept 127:183–189

    Article  PubMed  CAS  Google Scholar 

  87. Maia LG, Ramos MC, Fernandes L, de Carvalho MH, Campagnole-Santos MJ, Santos RAS (2004) Angiotensin-(1–7) antagonist A-779 attenuates the potentiation of bradykinin by captopril in rats. J Cardiovasc Pharmacol 43:685–691

    Article  PubMed  CAS  Google Scholar 

  88. Taal MW, Brenner BM (2000) Renoprotective benefits of RAS inhibition: from ACEI to angiotensin II antagonists. Kidney Int 57:1803–1817

    Article  PubMed  CAS  Google Scholar 

  89. Codreanu I, Perico N, Remuzzi G (2005) Dual blockade of the renin-angiotensin system: the ultimate treatment for renal protection? J Am Soc Nephrol 16 [Suppl 1]:S34–S38

    Article  PubMed  CAS  Google Scholar 

  90. Tallant EA, Ferrario CM, Gallagher PE (2005) Angiotensin-(1–7) inhibits growth of cardiac myocytes through activation of the Mas receptor. Am J Physiol 289:1560–1566

    Google Scholar 

  91. Tallant EA, Clark MA (2003) Molecular mechanisms of inhibition of vascular growth by angiotensin-(1–7). Hypertension 42:574–579

    Article  PubMed  CAS  Google Scholar 

  92. Gallagher PE, Tallant EA (2004) Inhibition of human lung cancer cell growth by angiotensin-(1–7). Carcinogenesis 25:2045–2052

    Article  PubMed  CAS  Google Scholar 

  93. Pereira RM, Santos RAS, Teixeira MM, Leite VHR, Costa LP, Barcelos L, Collares GB, Simões e Silva AC (2007) Renin Angiotensin System in a rat model of hepatic fibrosis: evidence for a protective role of Angiotensin-(1–7). J Hepatol 46:674–681

    Article  PubMed  CAS  Google Scholar 

  94. Iwata M, Cowling RT, Gurantz D, Moore C, Zhang S, Yuan JX, Greenberg BH (2005) Angiotensin-(1–7) binds to specific receptors on cardiac fibroblasts to initiate anti-fibrotic and anti-trophic effects. Am J Physiol 289:H2356–H2363

    CAS  Google Scholar 

  95. Santos RAS, Castro CH, Gava E, Pinheiro SV, Almeida AP, Paula RD, Cruz JS, Ramos AS, Rosa KT, Irigoyen MC, Bader M, Alenina N, Kitten GT, Ferreira AJ (2006) Impairment of in vitro and in vivo heart function in angiotensin-(1–7) receptor Mas knockout mice. Hypertension 47:996–1002

    Article  PubMed  CAS  Google Scholar 

  96. Kostenis E, Milligan G, Christopoulos A, Sanchez-Ferrer CF, Heringer-Walther S, Sexton PM, Gembardt F, Kellett E, Martini L, Vanderheyden P, Schultheiss HP, Walther T (2005) G-protein-coupled receptor Mas is a physiologic antagonist of the angiotensin II type 1 receptor. Circulation 111:1806–1813

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph T. Flynn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simões e Silva, A.C., Flynn, J.T. The renin–angiotensin–aldosterone system in 2011: role in hypertension and chronic kidney disease. Pediatr Nephrol 27, 1835–1845 (2012). https://doi.org/10.1007/s00467-011-2002-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-011-2002-y

Keywords

Navigation