Skip to main content

Advertisement

Log in

Buffer-dependent regulation of aquaporin-1 expression and function in human peritoneal mesothelial cells

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Biocompatible peritoneal dialysis fluids (PDF) are buffered with lactate and/or bicarbonate. We hypothesized that the reduced toxicity of the biocompatible solutions might unmask specific effects of the buffer type on mesothelial cell functions.

Methods

Human peritoneal mesothelial cells (HPMC) were incubated with bicarbonate (B-)PDF or lactate-buffered (L-)PDF followed by messenger RNA (mRNA) and protein analysis. Gene silencing was achieved using small interfering RNA (siRNA), functional studies using Transwell culture systems, and monolayer wound-healing assays.

Results

Incubation with B-PDF increased HPMC migration in the Transwell and monolayer wound-healing assay to 245 ± 99 and 137 ± 11% compared with L-PDF. Gene silencing showed this effect to be entirely dependent on the expression of aquaporin-1 (AQP-1) and independent of AQP-3. Exposure of HPMC to B-PDF increased AQP-1 mRNA and protein abundance to 209 ± 80 and 197 ± 60% of medium control; the effect was pH dependent. L-PDF reduced AQP-1 mRNA. Addition of bicarbonate to L-PDF increased AQP-1 abundance by threefold; mRNA half-life remained unchanged. Immunocytochemistry confirmed opposite changes of AQP-1 cell-membrane abundance with B-PDF and L-PDF.

Conclusions

Peritoneal mesothelial AQP-1 abundance and migration capacity is regulated by pH and buffer agents used in PD solutions. In vivo studies are required to delineate the impact with respect to long-term peritoneal membrane integrity and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yung S, Chan TM (2007) Mesothelial cells. Perit Dial Int 27(Suppl 2):S110–115

    PubMed  Google Scholar 

  2. Williams JD, Craig KJ, Topley N, Von Ruhland C, Fallon M, Newman GR, Mackenzie RK, Williams GT (2002) Peritoneal Biopsy Study Group: Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol 13(2):470–479

    PubMed  Google Scholar 

  3. Yang AH, Chen JY, Lin YP, Huang TP, Wu CW (1997) Peritoneal dialysis solution induces apoptosis of mesothelial cells. Kidney Int 51(4):1280–1288

    Article  PubMed  CAS  Google Scholar 

  4. Jörres A, Bender TO, Finn A, Witowski J, Fröhlich S, Gahl GM, Frei U, Keck H, Passlick-Deetjen J (1998) Biocompatibility and buffers: effect of bicarbonate-buffered peritoneal dialysis fluids on peritoneal cell function. Kidney Int 54(6):2184–2193

    Article  PubMed  Google Scholar 

  5. Witowski J, Korybalska K, Ksiazek K, Wisniewska-Elnur J, Jörres A, Lage C, Schaub TP, Passlick-Deetjen J, Breborowicz A, Grzegorzewska A, Ksiazek A, Liberek T, Lichodziejewska-Niemierko M, Majdan M, Rutkowski B, Stompór T, Sulowicz W (2004) Peritoneal dialysis with solutions low in glucose degradation products is associated with improved biocompatibility profile towards peritoneal mesothelial cells. Nephrol Dial Transplant 19(4):917–924

    Article  PubMed  CAS  Google Scholar 

  6. Hekking LH, Zareie M, Driesprong BA, Faict D, Welten AG, de Greeuw I, Schadee-Eestermans IL, Havenith CE, van den Born J, ter Wee PM, Beelen RH (2001) Better preservation of peritoneal morphologic features and defense in rats after long-term exposure to a bicarbonate/lactate-buffered solution. J Am Soc Nephrol 12(12):2775–2786

    PubMed  CAS  Google Scholar 

  7. Mortier S, Faict D, Lameire NH, De Vriese AS (2005) Benefits of switching from a conventional to a low-GDP bicarbonate/lactate-buffered dialysis solution in a rat model. Kidney Int 67(4):1559–1565

    Article  PubMed  CAS  Google Scholar 

  8. Wieczorowska-Tobis K, Brelinska R, Witowski J, Passlick-Deetjen J, Schaub TP, Schilling H, Breborowicz A (2004) Evidence for less irritation to the peritoneal membrane in rats dialyzed with solutions low in glucose degradation products. Perit Dial Int 24(1):48–57

    PubMed  CAS  Google Scholar 

  9. Choi HY, Kim DK, Lee TH, Moon SJ, Han SH, Lee JE, Kim BS, Park HC, Choi KH, Ha SK, Han DS, Lee HY (2008) The clinical usefulness of peritoneal dialysis fluids with neutral pH and low glucose degradation product concentration: an open randomized prospective trial. Perit Dial Int 28(2):174–182

    PubMed  CAS  Google Scholar 

  10. Lee HY, Choi HY, Park HC, Seo BJ, Do JY, Yun SR, Song HY, Kim YH, Kim YL, Kim DJ, Kim YS, Kim MJ, Shin SK (2006) Changing prescribing practice in CAPD patients in Korea: increased utilization of low GDP solutions improves patient outcome. Nephrol Dial Transplant 21(10):2893–2899

    Article  PubMed  CAS  Google Scholar 

  11. Pannekeet MM, Mulder JB, Weening JJ, Struijk DG, Zweers MM, Krediet RT (1996) Demonstration of aquaporin-CHIP in peritoneal tissue of uremic and CAPD patients. Perit Dial Int 16(Suppl 1):S54–57

    PubMed  Google Scholar 

  12. Plum J, Razeghi P, Lordnejad RM, Perniok A, Fleisch M, Fusshöller A, Schneider M, Grabensee B (2001) Peritoneal dialysis fluids with a physiologic pH based on either lactate or bicarbonate buffer-effects on human mesothelial cells. Am J Kidney Dis 38(4):867–875

    Article  PubMed  CAS  Google Scholar 

  13. Topley N, Alobaidi HM, Davies M, Coles GA, Williams JD, Lloyd D (1988) The effect of dialysate on peritoneal phagocyte oxidative metabolism. Kidney Int 34(3):404–411

    Article  PubMed  CAS  Google Scholar 

  14. Topley N, Kaur D, Petersen MM, Jörres A, Williams JD, Faict D, Holmes CJ (1996) In vitro effects of bicarbonate and bicarbonate-lactate buffered peritoneal dialysis solutions on mesothelial and neutrophil function. J Am Soc Nephrol 7(2):218–224

    PubMed  CAS  Google Scholar 

  15. Lai KN, Li FK, Lan HY, Tang S, Tsang AW, Chan DT, Leung JC (2001) Expression of aquaporin-1 in human peritoneal mesothelial cells and its upregulation by glucose in vitro. J Am Soc Nephrol 12(5):1036–1045

    PubMed  CAS  Google Scholar 

  16. Ni J, Verbavatz JM (2006) Aquaporin-1 plays an essential role in water permeability and ultrafiltration during peritoneal dialysis. Kidney Int 69(9):1518–1525

    Article  PubMed  CAS  Google Scholar 

  17. Yang B, Folkesson HG, Yang J, Matthay MA, Ma T, Verkman AS (1999) Reduced osmotic water permeability of the peritoneal barrier in aquaporin-1 knockout mice. Am J Physiol 276(1 Pt 1):C76–81

    PubMed  CAS  Google Scholar 

  18. Lai KN, Leung JC, Chan LY, Tang S, Li FK, Lui SL, Chan TM (2002) Expression of aquaporin-3 in human peritoneal mesothelial cells and its up-regulation by glucose in vitro. Kidney Int 62(4):1431–1439

    Article  PubMed  CAS  Google Scholar 

  19. Schoenicke G, Diamant R, Donner A, Roehrborn A, Grabensee B, Plum J (2004) Histochemical distribution and expression of aquaporin 1 in the peritoneum of patients undergoing peritoneal dialysis: relation to peritoneal transport. Am J Kidney Dis 44(1):146–154

    Article  PubMed  CAS  Google Scholar 

  20. Stylianou E, Jenner LA, Davies M, Coles GA, Williams JD (1990) Isolation, culture and characterization of human peritoneal mesothelial cells. Kidney Int 37(6):1563–70

    Article  PubMed  CAS  Google Scholar 

  21. Grossin N, Wautier MP, Wautier JL, Gane P, Taamma R, Boulanger E (2006) Improved in vitro biocompatibility of bicarbonate-buffered peritoneal dialysis fluid. Perit Dial Int 26(6):664–670

    PubMed  CAS  Google Scholar 

  22. Haas S, Schmitt CP, Arbeiter K, Bonzel KE, Fischbach M, John U, Pieper AK, Schaub TP, Passlick-Deetjen J, Mehls O, Schaefer F (2003) Improved acidosis correction and recovery of mesothelial cell mass with neutral-pH bicarbonate dialysis solution among children undergoing automated peritoneal dialysis. J Am Soc Nephro 14(10):2632–2638

    Article  Google Scholar 

  23. Zeier M, Schwenger V, Deppisch R, Haug U, Weigel K, Bahner U, Wanner C, Schneider H, Henle T, Ritz E (2003) Glucose degradation products in PD fluids: do they disappear from the peritoneal cavity and enter the systemic circulation? Kidney Int 63(1):298–305

    Article  PubMed  CAS  Google Scholar 

  24. Albrektsson A, Bazargani F, Wieslander A, Braide M (2006) Peritoneal dialysis fluid-induced angiogenesis in rat mesentery is increased by lactate in the presence or absence of glucose. ASAIO J 52(3):276–281

    Article  PubMed  CAS  Google Scholar 

  25. Ogata S, Mori M, Tatsukawa Y, Kiribayashi K, Yorioka N (2006) Expression of vascular endothelial growth factor, fibroblast growth factor, and lactate dehydrogenase by human peritoneal mesothelial cells in solutions with lactate or bicarbonate or both. Adv Perit Dial 22:37–40

    PubMed  CAS  Google Scholar 

  26. Papadopoulos MC, Saadoun S, Verkman AS (2008) Aquaporins and cell migration. Pflugers Arch 456(4):693–700

    Article  PubMed  CAS  Google Scholar 

  27. Hayashi S, Takahashi N, Kurata N, Yamaguchi A, Matsui H, Kato S, Takeuchi K (2009) Involvement of aquaporin-1 in gastric epithelial cell migration during wound repair. Biochem Biophys Res Commun 386(3):483–487

    Article  PubMed  CAS  Google Scholar 

  28. Hu J, Verkman AS (2006) Increased migration and metastatic potential of tumor cells expressing aquaporin water channels. FASEB J 20(11):1892–1894

    Article  PubMed  CAS  Google Scholar 

  29. Saadoun S, Papadopoulos MC, Hara-Chikuma M, Verkman AS (2005) Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature 434(7034):786–792

    Article  PubMed  CAS  Google Scholar 

  30. Hara-Chikuma M, Verkman AS (2008) Aquaporin-3 facilitates epidermal cell migration and proliferation during wound healing. J Mol Med 86(2):221–231

    Article  PubMed  CAS  Google Scholar 

  31. Garner MM, Burg MB (1994) Macromolecular crowding and confinement in cells exposed to hypertonicity. Am J Physiol 266(4 Pt 1):C877–92

    PubMed  CAS  Google Scholar 

  32. Boron WF (2006) Acid-base transport by the renal proximal tubule. J Am Soc Nephrol 17(9):2368–2382

    Article  PubMed  CAS  Google Scholar 

  33. Endeward V, Musa-Aziz R, Cooper GJ, Chen LM, Pelletier MF, Virkki LV, Supuran CT, King LS, Boron WF, Gros G (2006) Evidence that aquaporin 1 is a major pathway for CO2 transport across the human erythrocyte membrane. FASEB J 20(12):1974–1981

    Article  PubMed  CAS  Google Scholar 

  34. Musa-Aziz R, Chen LM, Pelletier MF, Boron WF (2009) Relative CO2/NH3 selectivities of AQP-1, AQP4, AQP5, AmtB, and RhAG. Proc Natl Acad Sci USA 106(13):5406–5411

    Article  PubMed  CAS  Google Scholar 

  35. Nakhoul NL, Davis BA, Romero MF, Boron WF (1998) Effect of expressing the water channel aquaporin-1 on the CO2 permeability of Xenopus oocytes. Am J Physiol 274(2 Pt 1):C543–548

    PubMed  CAS  Google Scholar 

  36. Prasad GV, Coury LA, Finn F, Zeidel ML (1998) Reconstituted aquaporin 1 water channels transport CO2 across membranes. J Biol Chem 273(50):33123–33126

    Article  PubMed  CAS  Google Scholar 

  37. Missner A, Kügler P, Saparov SM, Sommer K, Mathai JC, Zeidel ML, Pohl P (2008) Carbon dioxide transport through membranes. J Biol Chem 12;283(37):25340–7

    Article  Google Scholar 

  38. Waisbren SJ, Geibel JP, Modlin IM, Boron WF (1994) Unusual permeability properties of gastric gland cells. Nature 24;368(6469):332–5

    Article  Google Scholar 

  39. Plum J, Lordnejad MR, Grabensee B (1998) Effect of alternative peritoneal dialysis solutions on cell viability, apoptosis/necrosis and cytokine expression in human monocytes. Kidney Int 54(2):677

    Google Scholar 

  40. Ogata S, Naito T, Yorioka N, Kiribayashi K, Kuratsune M, Kohno N (2004) Effect of lactate and bicarbonate on human peritoneal mesothelial cells, fibroblasts and vascular endothelial cells, and the role of basic fibroblast growth factor. Nephrol Dial Transplant 19(11):2831–7

    Article  PubMed  CAS  Google Scholar 

  41. Plum J, Hermann S, Fusshöller A, Schoenicke G, Donner A, Röhrborn A, Grabensee B (2001) Peritoneal sclerosis in peritoneal dialysis patients related to dialysis settings and peritoneal transport properties. Kidney Int Suppl 78:S42–7

    Article  PubMed  CAS  Google Scholar 

  42. Zhou FQ (2005) Pyruvate in the correction of intracellular acidosis: a metabolic basis as a novel superior buffer. Am J Nephrol 25(1):55–63

    Article  PubMed  Google Scholar 

  43. Schmitt CP, von Heyl D, Rieger S, Arbeiter K, Bonzel KE, Fischbach M, Misselwitz J, Pieper AK, Schaefer F, for the Mid European Pediatric Peritoneal Dialysis Study Group (MEPPS) (2007) Reduced systemic advanced glycation end products in children receiving peritoneal dialysis with low glucose degradation product content. Nephrol Dial Transplant 22(7):2038–44

    Article  PubMed  CAS  Google Scholar 

  44. Frischmann M, Spitzer J, Fünfrocken M, Mittelmaier S, Deckert M, Fichert T, Pischetsrieder M (2009) Development and validation of an HPLC method to quantify 3,4-dideoxyglucosone-3-ene in peritoneal dialysis fluids. Biomed Chromatogr 23:843–851

    Article  PubMed  CAS  Google Scholar 

  45. Erixon M, Wieslander A, Lindén T, Carlsson O, Forsbäck G, Svensson E, Jönsson JA, Kjellstrand P (2006) How to avoid glucose degradation products in peritoneal dialysis fluids. Perit Dial Int 26:490–497

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Dr. Jutta Passlick-Deetjen, University of Düsseldorf, for scientific advice.

Disclosure

The project was supported by Fresenius Medical Care, Bad Homburg, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus P. Schmitt.

Additional information

Yihui Zhai and Jacek Bloch contributed equally to this manuscript

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhai, Y., Bloch, J., Hömme, M. et al. Buffer-dependent regulation of aquaporin-1 expression and function in human peritoneal mesothelial cells. Pediatr Nephrol 27, 1165–1177 (2012). https://doi.org/10.1007/s00467-012-2120-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-012-2120-1

Keywords

Navigation