Skip to main content

Advertisement

Log in

Crescents in primary glomerulonephritis: a pattern of injury with dissimilar actors. A pathophysiologic perspective

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Cellular crescents are defined as two or more layers of proliferating cells in Bowman’s space and are a hallmark of inflammatory active glomerulonephritis and a histologic marker of severe glomerular injury. In general, the percentage of glomeruli that exhibit crescents correlates with the severity of kidney failure and other clinical manifestations of nephritic syndrome. In general, a predominance of active crescents is associated with rapidly progressive glomerulonephritis and a poor outcome. The duration and potential reversibility of the underlying disease correspond with the relative predominance of cellular or fibrous components in the crescents, the initial location of the immunologic insult inside the glomerulus, and the sort of involved cells and inflammatory mediators. However, the presence of active crescents may not have the same degree of significance in the different types of glomerulopathies. The pathophysiology of parietal cell proliferation may have dissimilar origins, underscoring the fact that the resultant crescents are a non-specific morphological pattern of glomerular injury with different implications in clinical prognosis in the scope of glomerular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Anguiano L, Kain R, Anders HJ (2020) The glomerular crescent: triggers, evolution, resolution, and implications for therapy. Curr Opin Nephrol Hypertens 29:302–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Eymael J, Sharma S, Loeven MA, Wetzels JF, Mooren F, Florquin S, Deegens JK, Willemsen BK, Sharma V, van Kuppevelt TH, Bakker MA, Ostendorf T, Moeller MJ, Dijkman HB, Smeets B, van der Vlag J (2018) CD44 is required for the pathogenesis of experimental crescentic glomerulonephritis and collapsing focal and segmental glomerulosclerosis. Kidney Int 93:626–642

    Article  CAS  PubMed  Google Scholar 

  3. Fogo AB, Lusco MA, Najafian B, Alpers CE (2016) AJKD Atlas of renal pathology: pauci-immune necrotizing crescentic glomerulonephritis. Am J Kidney Dis 68:e31–e32

    Article  PubMed  Google Scholar 

  4. Puelles VG, Fleck D, Ortz L, Papadouri S et al (2019) Novel 3D analysis using optical tissue clearing documents the evolution of murine rapidly progressive glomerulonephritis. Kidney Int 96:505–516

    Article  PubMed  Google Scholar 

  5. Lan HY, Nikolic-Paterson DJ, Atkins RC (1992) Involvement of activated periglomerular leukocytes in the rupture of Bowman’s capsule and glomerular crescent progression in experimental glomerulonephritis. Lab Investig 67:743–751

    CAS  PubMed  Google Scholar 

  6. Jennette JC (2003) Rapidly progressive crescentic glomerulonephritis. Kidney Int 63:1164–1177

    Article  PubMed  Google Scholar 

  7. Kitching AR, Holdsworth SR, Tipping PG (1999) IFN-gamma mediates crescent formation and cell-mediated immune injury in murine glomerulonephritis. J Am Soc Nephrol 10:752–759

    Article  CAS  PubMed  Google Scholar 

  8. Hopfer H, Holzer J, Hünemörder S, Paust HJ, Sachs M, Meyer-Schwesinger C, Turner JE, Panzer U, Mittrücker HW (2012) Characterization of the renal CD4+ T-cell response in experimental autoimmune glomerulonephritis. Kidney Int 82:60–71

    Article  CAS  PubMed  Google Scholar 

  9. Kluger MA, Luig M, Wegscheid C, Goerke B et al (2014) Stat3 programs Th17-specific regulatory T cells to control GN. J Am Soc Nephrol 25:1291–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Giorgini A, Brown HJ, Sacks SH, Robson MG (2010) Toll-like receptor 4 stimulation triggers crescentic glomerulonephritis by multiple mechanisms including a direct effect on renal cells. Am J Pathol 177:644–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Naish P, Penn GB, Evans DJ, Peters DK (1972) The effect of defibrination on nephrotoxic serum nephritis in rabbits. Clin Sci 42:643–646

    Article  CAS  PubMed  Google Scholar 

  12. Tipping PG, Erlich JH, Apostolopoulos J, Mackman N, Loskutoff D, Holdsworth SR (1995) Glomerular tissue factor expression in crescentic glomerulonephritis. Correlations between antigen, activity, and mRNA. Am J Pathol 147:1736–1748

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cunningham MA, Kitching AR, Tipping PG, Holdsworth SR (2004) Fibrin independent proinflammatory effects of tissue factor in experimental crescentic glomerulonephritis. Kidney Int 66:647–654

    Article  CAS  PubMed  Google Scholar 

  14. Kitching AR, Holdsworth SR, Ploplis VA, Plow EF, Collen D, Carmeliet P, Tipping PG (1997) Plasminogen and plasminogen activators protect against renal injury in crescentic glomerulonephritis. J Exp Med 185:963–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Atkins RC, Nikolic-Paterson DJ, Song Q, Lan HY (1996) Modulators of crescentic glomerulonephritis. J Am Soc Nephrol 7:2271–2278

    Article  CAS  PubMed  Google Scholar 

  16. Moussa L, Apostolopoulos J, Davenport P, Tchongue J, Tipping PG (2007) Protease-activated receptor-2 augments experimental crescentic glomerulonephritis. Am J Pathol 171:800–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tipping PG, Holdsworth SR (1986) The participation of macrophages, glomerular procoagulant activity, and factor VIII in glomerular fibrin deposition. Studies on anti-GBM antibody-induced glomerulonephritis in rabbits. Am J Pathol 124:10–17

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lloyd CM, Dorf ME, Proudfoot A, Salant DJ, Gutierrez-Ramos JC (1997) Role of MCP-1 and RANTES in inflammation and progression to fibrosis during murine crescentic nephritis. J Leukoc Biol 62:676–680

    Article  CAS  PubMed  Google Scholar 

  19. Segerer S, Cui Y, Hudkins KL, Goodpaster T, Eitner F, Mack M, Schlöndorff D, Alpers CE (2000) Expression of the chemokine monocyte chemoattractant protein-1 and its receptor chemokine receptor 2 in human crescentic glomerulonephritis. J Am Soc Nephrol 11:2231–2242

    Article  CAS  PubMed  Google Scholar 

  20. Nishikawa K, Guo YJ, Miyasaka M, Tamatani T, Collins AB, Sy MS, McCluskey RT, Andres G (1993) Antibodies to intercellular adhesion molecule 1/lymphocyte function-associated antigen 1 prevent crescent formation in rat autoimmune glomerulonephritis. J Exp Med 177:667–677

    Article  CAS  PubMed  Google Scholar 

  21. Timoshanko JR, Kitching AR, Semple TJ, Holdsworth SR, Tipping PG (2005) Granulocyte macrophage colony-stimulating factor expression by both renal parenchymal and immune cells mediates murine crescentic glomerulonephritis. J Am Soc Nephrol 16:2646–2656

    Article  CAS  PubMed  Google Scholar 

  22. Song CY, Kim BC, Hong HK, Lee HS (2007) TGF-beta type II receptor deficiency prevents renal injury via decrease in ERK activity in crescentic glomerulonephritis. Kidney Int 71:882–888

    Article  CAS  PubMed  Google Scholar 

  23. Han Y, Ma FY, Tesch GH, Manthey CL, Nikolic-Paterson DJ (2013) Role of macrophages in the fibrotic phase of rat crescentic glomerulonephritis. Am J Physiol Ren Physiol 304:F1043–F1053

    Article  CAS  Google Scholar 

  24. Sanders JS, van Goor H, Hanemaaijer R, Kallenberg CG, Stegeman CA (2004) Renal expression of matrix metalloproteinases in human ANCA-associated glomerulonephritis. Nephrol Dial Transplant 19:1412–1419

    Article  CAS  PubMed  Google Scholar 

  25. Hochheiser K, Engel DR, Hammerich L, Heymann F, Knolle PA, Panzer U, Kurts C (2011) Kidney dendritic cells become pathogenic during crescentic glomerulonephritis with proteinuria. J Am Soc Nephrol 22:306–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Evers BD, Engel DR, Böhner AM, Tittel AP, Krause TA, Heuser C, Garbi N, Kastenmüller W, Mack M, Tiegs G, Panzer U, Boor P, Ludwig-Portugall I, Kurts C (2016) CD103+ kidney dendritic cells protect against crescentic GN by maintaining IL-10-producing regulatory T cells. J Am Soc Nephrol 27:3368–3382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li HL, Hancock WW, Dowling JP, Atkins RC (1991) Activated (IL-2R+) intraglomerular mononuclear cells in crescentic glomerulonephritis. Kidney Int 39:793–798

    Article  CAS  PubMed  Google Scholar 

  28. Kitching AR, Turner AL, Wilson GR, Semple T, Odobasic D, Timoshanko JR, O'Sullivan KM, Tipping PG, Takeda K, Akira S, Holdsworth SR (2005) IL-12p40 and IL-18 in crescentic glomerulonephritis: IL-12p40 is the key Th1-defining cytokine chain, whereas IL-18 promotes local inflammation and leukocyte recruitment. J Am Soc Nephrol 16:2023–2033

    Article  CAS  PubMed  Google Scholar 

  29. Smeets B, Uhlig S, Fuss A, Mooren F, Wetzels JF, Floege J, Moeller MJ (2009) Tracing the origin of glomerular extracapillary lesions from parietal epithelial cells. J Am Soc Nephrol 20:2604–2615

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shirato I, Asanuma K, Takeda Y, Hayashi K, Tomino Y (2000) Protein gene product 9.5 is selectively localized in parietal epithelial cells of Bowman’s capsule in the rat kidney. J Am Soc Nephrol 11:2381–2386

    Article  CAS  PubMed  Google Scholar 

  31. Fujigaki Y, Sun DF, Fujimoto T, Suzuki T, Goto T, Yonemura K, Morioka T, Yaoita E, Hishida A (2002) Mechanisms and kinetics of Bowman’s epithelial-myofibroblast transdifferentiation in the formation of glomerular crescents. Nephron 92:201–213

    Article  Google Scholar 

  32. Appel D, Kershaw DB, Smeets B, Yuan G, Fuss A, Frye B, Elger M, Kriz W, Floege J, Moeller MJ (2009) Recruitment of podocytes from glomerular parietal epithelial cells. J Am Soc Nephrol 20:333–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Le Hir M, Keller C, Eschmann V, Hähnel B, Hosser H, Kriz W (2001) Podocyte bridges between the tuft and Bowman’s capsule: an early event in experimental crescentic glomerulonephritis. J Am Soc Nephrol 12:2060–2071

    Article  PubMed  Google Scholar 

  34. Bariéty J, Bruneval P, Meyrier A, Mandet C, Hill G, Jacquot C (2005) Podocyte involvement in human immune crescentic glomerulonephritis. Kidney Int 68:1109–1119

    Article  PubMed  Google Scholar 

  35. Thorner PS, Ho M, Eremina V, Sado Y, Quaggin S (2008) Podocytes contribute to the formation of glomerular crescents. J Am Soc Nephrol 19:495–502

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ronconi E, Sagrinati C, Angelotti ML, Lazzeri E, Mazzinghi B, Ballerini L, Parente E, Becherucci F, Gacci M, Carini M, Maggi E, Serio M, Vannelli GB, Lasagni L, Romagnani S, Romagnani P (2009) Regeneration of glomerular podocytes by human renal progenitors. J Am Soc Nephrol 20:322–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Succar L, Boadle RA, Harris DC, Rangan GK (2016) Formation of tight junctions between neighboring podocytes is an early ultrastructural feature in experimental crescentic glomerulonephritis. Int J Nephrol Renovasc Dis 9:297–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kriz W, Hähnel B, Hosser H, Ostendorf T, Gaertner S, Kränzlin B, Gretz N, Shimizu F, Floege J (2003) Pathways to recovery and loss of nephrons in anti-Thy-1 nephritis. J Am Soc Nephrol 14:1904–1926

    Article  PubMed  Google Scholar 

  39. Tam FWK, Smith J, Morel D, Karkar AM, Thompson EM, Cook HT, Pusey CD (1999) Development of scarring and renal failure in a rat model of crescentic glomerulonephritis. Nephrol Dial Transplant 14:1658–1666

    Article  CAS  PubMed  Google Scholar 

  40. Kitching AR, Aikhan MA (2018) CD8+ cells and glomerular crescent formation: outside-in as well as inside-out. J Clin Invest 128:3231–3233

    Article  PubMed  PubMed Central  Google Scholar 

  41. Haas M, Verhave JC, Liu ZH, Alpers CE, Barratt J, Becker JU, Cattran D, H. Cook T, Coppo R, Feehally J, Pani A, Perkowska-Ptasinska A, Roberts ISD, Soares MF, Trimarchi H, Wang S, Yuzawa Y, Zhang H, Troyanov S, Katafuchi R (2017) The predictive value of crescents in IgA nephropathy: a large retrospective multicenter study. J Am Soc Nephrol 28:691–701

    Article  CAS  PubMed  Google Scholar 

  42. Trimarchi H, Barratt J, Cattran DC, Cook HT, Coppo R, Haas M, Liu ZH, Roberts ISD, Yuzawa Y, Zhang H, Feehally J (2017) Oxford classification for IgA nephropathy 2016. An update from the IgA Nephropathy Classification Working Group. Kidney Int 91:1014–1021

    Article  PubMed  Google Scholar 

  43. Couser WG (1988) Rapidly progressive glomerulonephritis: classification, pathogenetic mechanisms, and therapy. Am J Kidney Dis 11:449–464

    Article  CAS  PubMed  Google Scholar 

  44. Rizzo P, Novelli R, Rota C, Gagliardini E, Ruggiero B, Rottoli D, Benigni A, Remuzzi G (2017) The role of angiotensin II in parietal epithelial cell proliferation and crescent formation in glomerular diseases. Am J Pathol 187:1441–1450

    Article  CAS  Google Scholar 

  45. Rizzo P, Perico N, Gagliardini E, Novelli R, Alison MR, Remuzzi G, Benigni A (2013) Nature and mediators of parietal epithelial cell activation in glomerulonephritides of human and rat. Am J Pathol 183:1769–1778

    Article  CAS  PubMed  Google Scholar 

  46. Kim S, Iwao H (2000) Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev 52:11–34

    CAS  PubMed  Google Scholar 

  47. Kaneko Y, Sakatsume M, Xie Y, Kuroda T, Igashima M, Narita I, Gejyo F (2003) Macrophage metalloelastase as a major factor for glomerular injury in anti-glomerular basement membrane nephritis. J Immunol 170:3377–3385

    Article  CAS  PubMed  Google Scholar 

  48. Ryu M, Migliorini A, Miosge N, Gross O, Shankland S, Brinkkoetter PT, Hagmann H, Romagnani P, Liapis H, Anders HJ (2012) Plasma leakage through glomerular basement membrane ruptures triggers the proliferation of parietal epithelial cells and crescent formation in non-inflammatory glomerular injury. J Pathol 228:482–494

    Article  CAS  PubMed  Google Scholar 

  49. Moeller MJ, Soofi A, Hartmann I, Le Hir M, Wiggins R, Kriz W, Holzman LB (2004) Podocytes populate cellular crescents in a murine model of inflammatory glomerulonephritis. J Am Soc Nephrol 15:61–67

    Article  PubMed  Google Scholar 

  50. Yoshioka K, TakemuraT AN, Miyamoto H, Iseki T, Maki S (1987) Cellular and non-cellular compositions of crescents in human glomerulonephritis. Kidney Int 32:284–291

    Article  CAS  PubMed  Google Scholar 

  51. Itami H, Hara S, Samejima K, Tsushima H, Morimoto K, Okamoto K, Kosugi T, Kawano T, Fujiki K, Kitada H, Hatakeyama K, Tsuruya K, Ohbayashi C (2020) Complement activation is associated with crescent formation in IgA nephropathy. Virchows Arch 477:565–572

    Article  CAS  PubMed  Google Scholar 

  52. Roos A, Rastaldi MP, Calvaresi N, Oortwijn BD, Schlagwein N, van Gijlswijk-Janssen DJ, Stahl GL, Matsushita M, Fujita T, van Kooten C, Daha MR (2006) Glomerular activation of the lectin pathway of complement in IgA nephropathy is associated with more severe renal disease. J Am Soc Nephrol 17:1724–1734

    Article  CAS  PubMed  Google Scholar 

  53. Hashimoto A, Suzuki Y, Suzuki H, Ohsawa I, Brown R, Hall S, Tanaka Y, Novak J, Ohi H, Tomino Y (2012) Determination of severity of murine IgA nephropathy by glomerular complement activation by aberrantly glycosylated IgA and immune complexes. Am J Pathol 181:1338–1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Daha MR, van Kooten C (2000) Is there a role for locally produced complement in renal disease? Nephrol Dial Transplant 15:1506–1509

    Article  CAS  PubMed  Google Scholar 

  55. Lazareth H, Henique C, Lenoir O, Puelles VG et al (2019) The tetraspanin CD9 controls migration and proliferation of parietal epithelial cells and glomerular disease progression. Nat Commun 10:3303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Jennette JC, Nachman PH (2017) ANCA glomerulonephritis and vasculitis. Clin J Am Soc Nephrol 12:1680–1691

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ranasinghe R, Eri R (2018) Modulation of the CCR6-CCL20 axis: a potential therapeutic target in inflammation and cancer. Medicina 54:88

    Article  PubMed Central  Google Scholar 

  58. Jia ZJ, Wu FX, Huang QH, Liu JM (2012) Toll-like receptor 4: the potential therapeutic target for neuropathic pain. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 34:168–173

    CAS  PubMed  Google Scholar 

  59. Monnet E, Lapeyre G, Poelgeest EV, Jacqmin P, Graaf K, Reijers J, Moerland M, Burggraaf J, Min C (2017) Evidence of NI-0101 pharmacological activity, an anti-TLR4 antibody, in a randomized phase I dose escalation study in healthy volunteers receiving LPS. Clin Pharmacol Ther 101:200–208

    Article  CAS  PubMed  Google Scholar 

  60. Li L, Ni L, Heary RF, Elkabes S (2020) Astroglial TLR9 antagonism promotes chemotaxis and alternative activation of macrophages via modulation of astrocyte derived signals: implications for spinal cord injury. J Neuroinflammation 17:73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yao W, Ba Q, Li X, Li H, Zhang S, Yuan Y, Wang F, Duan X, Li J, Zhang W, Wang H (2017) A natural CCR2 antagonist relieves tumor-associated macrophage-mediated immunosuppression to produce a therapeutic effect for liver cancer. EBioMedicine 22:58–67

    Article  PubMed  PubMed Central  Google Scholar 

  62. de Zeeuw D, Bekker P, Henkel E, Hasslacher C, Gouni-Berthold I et al (2015) The effect of CCR2 inhibitor CCX140-B on residual albuminuria in patients with type 2 diabetes and nephropathy: a randomised trial. Lancet Diabetes Endocrinol 3:687–696

    Article  PubMed  CAS  Google Scholar 

  63. Huang X, Ni B, Xi Y (2019) Protease-activated receptor 2 (PAR-2) antagonist AZ3451 as a novel therapeutic agent for osteoarthritis. Aging 11:12533–12545

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The author entirely contributed to the development of the manuscript.

Corresponding author

Correspondence to Hernán Trimarchi.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trimarchi, H. Crescents in primary glomerulonephritis: a pattern of injury with dissimilar actors. A pathophysiologic perspective. Pediatr Nephrol 37, 1205–1214 (2022). https://doi.org/10.1007/s00467-021-05199-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-021-05199-1

Keywords

Navigation