Skip to main content
Log in

Effects of triploid status on growth, photosynthesis, and leaf area in Populus

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

The growth vigor of Populus triploid groups explained by higher photosynthetic rate in the vertical canopy gradient, higher relative chlorophyll content, and larger leaf area, compared to diploid group.

Abstract

Polyploids show vegetative growth superiority compared to diploids, however, the reason remains unclear. Here, we explored this observation based on variations in 12 phenotypic traits including vegetative growth, leaf area, and photosynthesis using 120 genotypes with three allotriploid groups of different heterozygosities (obtained using three types of 2n gametes) and one diploid group obtained from the same parents in Populus. Wide ranges in phenotypic variation (2.70–38.34 %) were detected in all traits within the progeny population. In addition, the vegetative growth traits, net photosynthetic rate (Pn), relative chlorophyll content index (CCI), leaf area (LA), and photosynthetic efficiency of whole leaves (PEw) in the polyploid group were significantly higher than those in the diploid group, indicating that certain polyploid groups had greater advantages in these respects. However, there were also significant differences in vegetative growth, Pn, LA, and PEw among the three allopolyploid groups, which probably resulted from the 2n gametes with different origins transferring different heterozygosities. Furthermore, a higher Pn of vertical canopy gradient photosynthesis was observed in triploid groups compared to the diploid group. In general, the greater vegetative growth advantages in relation to photosynthesis in the triploid groups were explained by three reasons including a higher Pn which probably resulted from a higher CCI, a higher PEw mainly caused by a larger LA, and a lower aging rate of mature leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Austin RB, Morgan CL, Ford MA, Bhagwat SG (1981) Flag leaf photosynthesis of Triticum aestivum and related diploid and tetraploid species. Ann Bot 49(2):177–189

    Google Scholar 

  • Baer GR, Schrader LE (1985) Relationships between CO2 exchange rates and activities of pyruvate, Pi dikinase and ribulose bisphosphate carboxylase, chlorophyll concentration, and cell volume in maize leaves. Plant Physiol 77(3):612–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barone A, Gebhardt C, Frusciante L (1995) Heterozygosity in 2n gametes of potato evaluated by RFLP markers. Theor Appl Genet 91:98–104

    Article  CAS  PubMed  Google Scholar 

  • Bassman JH, Zwier JC (1991) Gas exchange characteristics of Populus trichocarpa, Populus deltoides and Populus trichocarpa × P. deltoides clones. Tree Physiol 8(2):145–159

    Article  PubMed  Google Scholar 

  • Bennett MD (1987) Variation in genomic form in plants and its ecological implications. New Phytol 106(s1):177–200

    Google Scholar 

  • Bhagsari AS, Brown RH (1986) Leaf photosynthesis and its correlation with leaf area. Crop Sci 26(1):127–132

    Article  Google Scholar 

  • Bierhuizen JF, Slatyer RO (1965) Effect of atmospheric concentration of water vapor and CO2 in determining transpiration-photosynthesis relationship of cotton leaves. Agri Meteorol 2:259–270

    Article  Google Scholar 

  • Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504

    Article  PubMed  Google Scholar 

  • Bowes G (1993) Facing the inevitable: plants and increasing atmospheric CO2. Annu Rev Plant Biol 44:309–332

    Article  CAS  Google Scholar 

  • Buchanan-Wollaston V (1997) The molecular biology of leaf senescence. J Exp Bot 48(2):181–199

    Article  Google Scholar 

  • Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D (2003) The molecular analysis of leaf senescence—a genomics approach. Plant Biotechnol J 1(1):3–22

    Article  CAS  PubMed  Google Scholar 

  • Chen ZJ (2007) Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol 58:377–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZJ (2010) Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci 15(2):57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coate JE, Luciano AK, Seralathan V, Minchew KJ, Owens TG, Doyle JJ (2012) Anatomical, biochemical, and photosynthetic responses to recent allopolyploidy in Glycine dolichocarpa (Fabaceae). Am J Bot 99(1):55–67

    Article  CAS  PubMed  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploidy. Nat Rev Genet 6:836–846

    Article  CAS  PubMed  Google Scholar 

  • Deng W, Yu C, Peng B, Li Y, Huang SJ, Guo DG, Xiong C, Ye CH, Hu XM (2012) Study on photosynthetic characteristics of Esang 2, an artificial tetraploid mulberry variety. Sci Seric 38(3):0381–0388

    CAS  Google Scholar 

  • Dong CB, Mao JF, Suo YJ, Shi L, Wang J, Zhang PD, Kang XY (2014) A strategy for characterization of persistence heteroduplex DNA in higher plants. Plant J 80(2):282–291

    Article  CAS  PubMed  Google Scholar 

  • Dong CB, Suo YJ, Wang J, Kang XY (2015) Analysis of transmission of heterozygosity by 2n gemetes in Populus (Salicaceae). Tree Genet Genomes 11:799. doi:10.1007/s11295-014-0799-9

    Article  Google Scholar 

  • Du QZ, Xu BH, Gong CR, Yang XH, Pan W, Tian JX, Li BL, Zhang DQ (2014) Variation in growth, leaf, and wood property traits of Chinese white poplar (Populus tomentosa), a major industrial tree species in Northern China. Can J Forest Res 44(4):326–339

    Article  Google Scholar 

  • Evans JR (2013) Improving photosynthesis. Plant Physiol 162(4):1780–1793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans JR, Caemmerer SV (2011) Enhancing photosynthesis. Plant Physiol 155(1):19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ewald D, Ulrich K, Naujoks G, Schröder MB (2009) Induction of tetraploid poplar and black locust plants using colchicine: chloroplast number as an early marker for selecting polyploids in vitro. Plant Cell Tiss Organ Cult 99:353–357

    Article  Google Scholar 

  • Faville MJ, Silvester WB, Allan Green TG, Jermyn WA (1999) Photosynthetic characteristics of three asparagus cultivars differing in yield. Crop Sci 39(4):1070–1077

    Article  Google Scholar 

  • Geber MA, Griffen LR (2003) Inheritance and natural selection on functional traits. Int J Plant Sci 164(S3):S21–S42

    Article  Google Scholar 

  • Hull-Sanders HM, Johnson RH, Owen HA, Meyer GA (2009) Effects of polyploidy on secondary chemistry, physiology, and performance of native and invasive genotypes of Solidago gigantean (Asteraceae). Am J Bot 96(4):762–770

    Article  PubMed  Google Scholar 

  • Iwanaga M, Peloquin SJ (1982) Origin and evolution of cultivated tetraploid potatoes via 2n gametes. Theor Appl Genet 61:161–169

    Article  CAS  PubMed  Google Scholar 

  • Jellings AJ, Leech BM (1984) Anatomical variation in first leaves of nine Triticum genotypes, and its relationship to photosynthetic capacity. New Phytol 96(3):371–382

    Article  Google Scholar 

  • Kaminski A, Austin RB, Ford MA, Morgan CL (1990) Flag leaf anatomy of Triticum and Aegilops species in relation to photosynthetic rate. Ann Bot 66(3):359–365

    Google Scholar 

  • Kondorosi E, Roudier F, Gendreau E (2000) Plant cell-size control: growing by ploidy? Curr Opin Plant Biol 3(6):488–492

    Article  CAS  PubMed  Google Scholar 

  • Lande R (1981) The minimum number of genes contributing to quantitative variation between and within populations. Genetics 99(3–4):541–553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li JY, Zhang ZY (2000) Genetic variation in photosynthetic traits of triploid clones of Populus tomentosa. J Beijing For Univ 22(6):12–15

    CAS  Google Scholar 

  • Liesebach H, Ulrich K, Ewald D (2015) FDR and SDR processes in meiosis and diploid gamete formation in poplars (Populus L.) detected by centromere-associated microsatellite markers. Tree Genet Genomes 11:801

    Article  Google Scholar 

  • Ma KF, Song YP, Jiang XB, Zhang ZY, Li BL, Zhang DQ (2012) Photosynthetic response to genome methylation affects the growth of Chinese white poplar. Tree Genet Genomes 8(6):1407–1421

    Article  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51(345):659–668

    Article  CAS  PubMed  Google Scholar 

  • Meng FJ, Peng M, Pang HY, Huang FL (2014) Comparison of photosynthesis and leaf ultrastructure on two black locust (Robinia pseudoacacia L.). Biochem Syst Ecol 55:170–175

    Article  CAS  Google Scholar 

  • Muhammed AK, Tsunoda S (1970) Leaf photosynthesis and transpiration under different levels of air flow rate and light intensity in cultivated wheat species and its wild relatives. Jpn J Breed 20:305–314

    Article  Google Scholar 

  • Murchie EH, Pinto M, Horton P (2009) Agriculture and the new challenges for photosynthesis research. New Phytol 181(3):532–552

    Article  CAS  PubMed  Google Scholar 

  • Nagel JM, Griffin KL (2001) Construction cost and invasive potential: comparing Lythrum salicaria (Lythraceae) with co-occurring native species along pond banks. Am J Bot 88(12):2252–2258

    Article  CAS  PubMed  Google Scholar 

  • Nam HG (1997) The molecular genetic analysis of leaf senescence. Curr Opin Biotech 8(2):200–207

    Article  CAS  PubMed  Google Scholar 

  • Offermann S, Peterhansel C (2014) Can we learn from heterosis and epigenetics to improve photosynthesis? Curr Opin Plant Biol 19:105–110

    Article  CAS  PubMed  Google Scholar 

  • Oh SA, Park JH, Lee GI, Paek YH, Park SK, Nam HG (1997) Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana. Plant J 12(3):527–535

    Article  CAS  PubMed  Google Scholar 

  • Peloquin SJ, Boiteux LS, Simon PW, Jansky SH (2008) A chromosome-specific estimate of transmission of heterozygosity by 2n gametes in potato. J Hered 99:177–181

    Article  CAS  PubMed  Google Scholar 

  • Porth I, Klápšteˇ J, Skyba O, Lai BSK, Geraldes A, Muchero W, Tuskan GA, Douglas CJ, El-Kassaby YA, Mansfield SD (2013) Populus trichocarpa cell wall chemistry and ultrastructure trait variation, genetic control, and genetic correlations. New Phytol 197(3):777–790

    Article  CAS  PubMed  Google Scholar 

  • Quirino BF, Noh YS, Himelblau E, Amasino RM (2000) Molecular aspects of leaf senescence. Trends Plant Sci 5(7):278–282

    Article  CAS  PubMed  Google Scholar 

  • Romero-Aranda R, Bondada BR, Syvertsen JP, Grosser JW (1997) Leaf characteristics and net gas exchange of diploid and autotetraploid citrus. Ann Bot 79(2):153–160

    Article  Google Scholar 

  • Sharma-Natu P, Ghildiyal MC (2005) Potential targets for improving photosynthesis and crop yield. Curr Sci 88(12):1918–1928

    CAS  Google Scholar 

  • Sicher RC, Kremer DF, Harris WG, Baenziger PS (1984) Photosynthate partitioning in diploid and autopetraplod barley (Hordeum vulgare). Physiol Plantarum 60(2):239–246

    Article  CAS  Google Scholar 

  • Sirohi GS, Ghildiyal MC (1975) Varietal differences in photosynthetic carboxylases and chlorophylls in wheat varieties. Indian J Exp Biol 13:42–44

    CAS  Google Scholar 

  • Takeda K, Frey KJ (1977) Growth rate inheritance and associations with other traits in backcross populations of Avena sativa × A. sterilis. Euphytica 26(2):309–317

    Article  Google Scholar 

  • Vyas P, Bisht MS, Miyazawa SI, Yano S, Noguchi K, Terashima I, Funayama-Noguchi S (2007) Effects of polyploidy on photosynthetic properties and anatomy in leaves of Phlox drummondii. Funct Plant Biol 34(8):673–682

    Article  CAS  Google Scholar 

  • Wang J, Kang XY, Li DL, Chen HW, Zhang PD (2010) Induction of diploid eggs with colchicine during embryo sac development in Populus. Silvae Genet 59:40–48

    Google Scholar 

  • Wang J, Li DL, Kang XY (2012) Induction of unreduced megaspores with high temperature during megasporogenesis in Populus. Ann For Sci 69(1):59–67

    Article  Google Scholar 

  • Wang BW, Du QZ, Yang XH, Zhang DQ (2014) Identification and characterization of nuclear genes involved in photosynthesis in Populus. BMC Plant Biol 14:81

    Article  PubMed  PubMed Central  Google Scholar 

  • Warner DA, Edwards GE (1988) C4 photosynthesis and leaf anatomy in diploid and autotetraploid Pennisetum americanum (pearl millet). Plant Sci 56(1):85–92

    Article  CAS  Google Scholar 

  • Warner DA, Edwards GE (1989) Effects of polyploidy on photosynthetic rates, photosynthetic enzymes, contents of DNA, chlorophyll, and sizes and numbers of photosynthetic cells in the C4 dicot Atriplex confertifolia. Plant Physiol 91(3):1143–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warner DA, Edwards GE (1993) Effects of polyploidy on photosynthesis. Photosynth Res 35(2):135–147

    Article  CAS  PubMed  Google Scholar 

  • Warner DA, Ku MSB, Edwards GE (1987) Photosynthesis, leaf anatomy, and cellular constituents in the polyploidy C4 grass Panicum vorgatum. Plant Physiol 84(2):461–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin WL (1983) A comparative study on growth and photosynthetic activity of different kinds of poplar seedlings II. Net photosynthetic rate, photorespiration and hill reaction as indices for breeding clones. J Beijing For Univ 2:41–55

    Google Scholar 

  • Zhang QY, Luo FX, Liu L, Guo FC (2010) In vitro induction of tetraploids in crape myrtle (Lagerstroemia indica L.). Plant Cell Tissue Organ Cult 101:41–47

    Article  CAS  Google Scholar 

  • Zhu ZT, Lin HB, Kang XY (1995) Studies on allotriploid breeding of Populus tomentosa B301 clones. Sci Silvae Sin 31(6):499–506

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the staff of Guanxian nursery in Shandong Province, China for their providing of experimental field. We were also grateful to the anonymous reviewers and editors for their constructive comments. This work was supported by the National Natural Science Foundation of China (31530012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyang Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by R. Alia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

468_2016_1352_MOESM1_ESM.tif

Fig. S1 (a-l) Phenotypic variation of 12 traits measured in diploid and triploid groups. a: H; b: D; c: Pn; d: Gs; e: Ci; f: Tr; g: WUEi; h: CCI; i: LA; j: PEw; k: Fv/Fm; l: Fv/Fo. Abbreviations: H: height; D: diameter at base; Pn: net photosynthetic rate; Gs: stomatal conductance; Ci: intercellular carbon dioxide concentration; Tr: transpiration rate; WUEi: instantaneous water use efficiency; CCI: chlorophyll content index; LA: leaf area; PEw: photosynthetic efficiency of whole leaf; Fv/Fm: the maximal photochemical efficiency of PSII; Fv/Fo: the potential photochemical efficiency of PSII (TIFF 313 kb)

468_2016_1352_MOESM2_ESM.tif

Fig. S2 (a-l) Distribution pattern for each trait measured across the progeny population (n = 120). a: H; b: D; c: Pn; d: Gs; e: Ci; f: Tr; g: WUEi; h: CCI; i: LA; j: PEw; k: Fv/Fm; l: Fv/Fo. Abbreviations: H: height; D: diameter at base; Pn: net photosynthetic rate; Gs: stomatal conductance; Ci: intercellular carbon dioxide concentration; Tr: transpiration rate; WUEi: instantaneous water use efficiency; CCI: chlorophyll content index; LA: leaf area; PEw: photosynthetic efficiency of whole leaf; Fv/Fm: the maximal photochemical efficiency of PSII; Fv/Fo: the potential photochemical efficiency of PSII (TIFF 475 kb)

468_2016_1352_MOESM3_ESM.tif

Fig. S3 (a-l) Distribution pattern for each trait measured in the diploid and triploid groups. a: H; b: D; c: Pn; d: Gs; e: Ci; f: Tr; g: WUEi; h: CCI; i: LA; j: PEw; k: Fv/Fm; l: Fv/Fo. Abbreviations: H: height; D: diameter at base; Pn: net photosynthetic rate; Gs: stomatal conductance; Ci: intercellular carbon dioxide concentration; Tr: transpiration rate; WUEi: instantaneous water use efficiency; CCI: chlorophyll content index; LA: leaf area; PEw: photosynthetic efficiency of whole leaf; Fv/Fm: the maximal photochemical efficiency of PSII; Fv/Fo: the potential photochemical efficiency of PSII (TIFF 732 kb)

Supplementary material 4 (DOCX 18 kb)

Supplementary material 5 (DOCX 19 kb)

Supplementary material 6 (DOCX 19 kb)

Supplementary material 7 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, T., Cheng, S., Zhu, X. et al. Effects of triploid status on growth, photosynthesis, and leaf area in Populus . Trees 30, 1137–1147 (2016). https://doi.org/10.1007/s00468-016-1352-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-016-1352-2

Keywords

Navigation