Skip to main content
Log in

Geostatistical mixed beta regression: a Bayesian approach

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

This paper develops regression techniques for geostatistical data, with an emphasis in proportions measured on a continuous scale. Specifically, it deals with Beta regression models with mixed effects to control the spatial variability from a Bayesian approach. We use a suitable parametrization of the Beta distribution in terms of its mean and the precision parameter, allowing for both parameters to be modeled through regression structures that may involve fixed and random effects. Specification of prior distributions is discussed, computational implementation via Gibbs sampling is provided, and the methodology is illustrated using simulated and real data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aitchison J (1986) The statistical analysis of compositional data. Chapman and Hall, London

    Book  Google Scholar 

  • Banerjee S, Bradley PC, Gelfand AE (2004) Hierarchical modeling and analysis for spatial data. CRC Press, USA

    Google Scholar 

  • Bonat WH, Ribeiro PJ, Shimakura SE (2015) Bayesian analysis for a class of beta mixed models. Chil J Stat 6:3–13

    Google Scholar 

  • Branscum AJ, Johnson WO, Thurmond MC (2007) Bayesian beta regression: applications to household expenditure data and genetic distance between foot-and-mouth disease viruses. Aust N Zeal J Stat 49(3):287–301

    Article  Google Scholar 

  • Breslow NE, Clayton DG (1993) Approximate inference in generalized linear mixed models. J Am Stat Assoc 88:9–25

    Google Scholar 

  • Brooks SP, Gelman A (1998) General methods for monitoring convergence of iterative simulations. J Comput Graph Stat 7:434–455

    Google Scholar 

  • Brooks SP (2002) Trans-dimensional markov chains and their applications in statistics.In: COMPSTAT 2002 proceedings in computational statistics, pp 91–102

  • Carlin BP, Louis T (1996) Bayes and empirical bayes methods for data analysis, 1st edn. Chapman and Hall, London

    Google Scholar 

  • Carrigan G, Barnett AG, Dobson AJ, Mishra G (2007) Compensating for missing data from longitudinal studies using Winbugs. J Stat Soft 19:1–7

  • Cepeda-Cuervo E, Núñez-Antón V (2013) Spatial double generalized beta regression models: extensions and application to study quality of education in Colombia. J Educ Behav Stat 38:604–628

    Article  Google Scholar 

  • Clayton D, Kaldor J (1987) Empirical bayes estimates of age-standardized relative risks for use in disease mapping. Biometrics 43:671–681

    Article  CAS  Google Scholar 

  • Cressie N, Wikle CK (2011) Statistics for spatio-temporal data, 1st edn. Wiley, New York

    Google Scholar 

  • Cressie N (1993) Statistics for spatial data, 1st edn. Wiley, New York

    Google Scholar 

  • Dey DK, Ghosh SK, Mallick BK (2000) Generalized linear models: a bayesian perspective, 1st edn. Marcel Dekker, New York

    Google Scholar 

  • Diggle P, Tawn JA, Moyeed RA (1998) Model-based geostatistics (with discussion). J R Stat Soc Ser C 47:299–350

    Article  Google Scholar 

  • Diggle PJ, Ribeiro PJJ (2007) Model-based geostatistics. Springer, New York

    Google Scholar 

  • Ecker MD, Gelfand AE (1997) Bayesian variogram modeling for an isotropic spatial process. J Agric Biol Environ Stat 2:347–368

    Article  Google Scholar 

  • Ferrari SLP, Cribari-Neto F (2004) Beta regression for modelling rates and proportions. J Appl Stat 31:799–815

    Article  Google Scholar 

  • Figueroa-Zúñiga JI, Arellano-Valle RB, Ferrari SLP (2013) Mixed beta regression: a bayesian perspective. Comput Stat Data Anal 61:137–147

    Article  Google Scholar 

  • Flynn MR (2004) The beta distribution–a physically consistent model for human exposure to airborne contaminants. Stoch Environ Res Risk Assess 18:306–308

    Article  Google Scholar 

  • Gamerman D (2006) Markov Chain Monte Carlo: stochastic simulation for Bayesian inference. Chapman and Hall, London

    Google Scholar 

  • Gelman A (2006) Prior distributions for variance parameters in hierarchical models. Bayesian Anal 1:515–533

    Article  Google Scholar 

  • Geweke J (1992) Evaluating the accuracy of sampling-based approaches to calculating posterior moments. In: Bernardo JM, Berger JO, Dawid AP, Smith AFM (eds) Bayesian statistics 4,pp 169–193

  • Goovaerts P (1997) Geostatistics for natural resource evaluation. Oxford University Press, Oxford

    Google Scholar 

  • Haining R, Griffith D, Bennett R (1989) Maximum likelihood estimation with missing spatial data and with an application to remotely sensed data. Communications in Statistics: Theory and Methods 18:1875–1894

    Article  Google Scholar 

  • Ingebrigtsen R, Lindgren F, Steinsland I, Martino S (2015) Estimation of a non-stationary model for annual precipitation in southern norway using replicates of the spatial field. Spat Stat 14:338–364

    Article  Google Scholar 

  • Journel AG (1983) Geostatistics, encyclopedia of statistical sciences (9 vols. plus supplement) 3:424–431

  • Melo OO, Melo CE, Mateu J (2015) Distance-based beta regression for prediction of mutual funds. AStA Adv Stat Anal 99:83–106

    Article  Google Scholar 

  • Pawlowsky-Glahn V, Olea RA (2004) Geostatistical analysis of compositional data, vol 7. Oxford University Press, Oxford

    Google Scholar 

  • Pawlowsky-Glahn V, Egozcue JJ, Tolosana-Delgado R (2015) Modeling and analysis of compositional data. Wiley, New York

    Google Scholar 

  • Pilz J, Spöck G (2008) Why do we need and how should we implement bayesian kriging methods. Stoch Environ Res Risk Assess 22:621–632

    Article  Google Scholar 

  • Sahlin K (2011) Estimating convergence of Markov Chain Monte Carlo simulations. Master’s thesis, Stockholms Universitet

  • Simas A, Barreto-Souza W, Rocha A (2010) Improved estimators for a general class of beta regression models. Comput Stat Data Anal 54:348–366

    Article  Google Scholar 

  • Smithson M, Verkuilen J (2006) A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol Methods 11:54–71

    Article  Google Scholar 

  • Spiegelhalter DJ, Best NG, Carlin BP, Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc Ser B 64:583–639

    Article  Google Scholar 

  • Tolosana-Delgado R, van den Boogaart KG, Pawlowsky-Glahn V (2011) Geostatistics for compositions. In: Buccianti A, Pawlowsky-Glahn V (eds) Compositional data analysis, theory and applications. Wiley, New York

    Google Scholar 

  • van de Kassteele J, Dekkers A, Stein A, Velders G (2005) Model-based geostatistical interpolation of the annual number of ozone exceedance days in the netherlands. Stoch Environ Res Risk Assess 19:173–183

    Article  Google Scholar 

  • Van den Boogaart K, Tolosana R, Bren M (2014) Compositions: compositional data analysis. R package version 1.40-1. https://CRAN.R-project.org/package=compositions

  • Waller L, Carlin B, Xia H, Gelfand AE (1997) Hierarchical spatio-temporal mapping of disease rates. J Am Stat Assoc 92:607–617

    Article  Google Scholar 

  • Yasui Y, Lele S (1997) A regression method for spatial disease rates: an estimating function approach. J Am Stat Assoc 92:21–32

    Article  Google Scholar 

  • Yu B, Mykland PA (1998) Looking at markov samplers through cusum path plots: a simple diagnostic idea. Stat Comput 8:275–286

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the following partial financial support. The first author thanks the VRID grant 216.014.026-1.0, from University of Concepción. The second author thanks the Fondecyt grant 11130483, and the third author the Advanced Mining Technology Center, University of Chile and CSIRO-Chile for having provided the facilities and equipment in which the data were simulated. Finally, the fourth author thanks the grants MTM2013-43917-P from the Spanish Ministry of Science and Education, and P1-1B2015-40.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernardo M. Lagos-Álvarez.

Appendix

Appendix

R-code used with the library compositions of the R software for the compositional analysis.

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lagos-Álvarez, B.M., Fustos-Toribio, R., Figueroa-Zúñiga, J. et al. Geostatistical mixed beta regression: a Bayesian approach. Stoch Environ Res Risk Assess 31, 571–584 (2017). https://doi.org/10.1007/s00477-016-1308-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-016-1308-5

Keywords

Navigation