Skip to main content

Advertisement

Log in

Vertical gradient of climate change and climate tourism conditions in the Black Forest

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Due to the public discussion about global and regional warming, the regional climate and the modified climate conditions are analyzed exemplarily for three different regions in the southern Black Forest (southwest Germany). The driving question behind the present study was how can tourism adapt to modified climate conditions and associated changes to the tourism potential in low mountain ranges. The tourism potential is predominately based on the attractiveness of natural resources being climate-sensitive. In this study, regional climate simulations (A1B) are analyzed by using the REMO model. To analyze the climatic tourism potential, the following thermal, physical and aesthetic parameters are considered for the time span 1961–2050: thermal comfort, heat and cold stress, sunshine, humid–warm conditions (sultriness), fog, precipitation, storm, and ski potential (snow cover). Frequency classes of these parameters expressed as a percentage are processed on a monthly scale. The results are presented in form of the Climate-Tourism-Information-Scheme (CTIS). Due to warmer temperatures, winters might shorten while summers might lengthen. The lowland might be more affected by heat and sultriness (e.g., Freiburg due to the effects of urban climate). To adapt to a changing climate and tourism, the awareness of both stakeholders and tourists as well as the adaptive capability are essential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Becken S, Hay J (2007) Tourism and climate change – risks and opportunities. Channel View, Clevedon, UK

  • Beniston M (1997) Variations of snow depth and duration in the Swiss Alps over the last 50 years: links to changes in large-scale climatic forcing. Clim Change 36:281–300

    Article  Google Scholar 

  • Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. Clim Change 59:5–31

    Article  Google Scholar 

  • Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, Palutikof J, Schöll R, Semmler T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate modeling projection. Clim Change 81:71–95

    Article  Google Scholar 

  • Besancenot JP (1989) Climat et tourisme. Masson, Paris

    Google Scholar 

  • Besancenot JP, Mounier J, Lavenne J (1978) Les conditions climatiques du tourisme littoral: uneméthode de recherche compréhensive. Norois 99:357–382

    Article  Google Scholar 

  • Breiling M, Charamza P (1999) The impact of global warming on winter tourism and skiing: a regionalised model for Austrian snow conditions. Reg Environ Change 1:4–14

    Article  Google Scholar 

  • Brown RD, Mote PW (2009) The response of Northern Hemisphere snow cover to a changing climate. J Clim 22:2124–2145

    Article  Google Scholar 

  • de Freitas CR (2003) Tourism Climatology: evaluating environmental information for decision making and business planning in the recreation and tourism sector. Int J Biometeorol 48:45–54

    Article  Google Scholar 

  • Elsasser H, Bürki R (2002) Climate change as a threat to tourism in the Alps. Clim Res 20:253–257

    Article  Google Scholar 

  • Endler C, Matzarakis A (2008) Climatic tourism potential in the North Sea and Black Forest – a comparison of REMO and DWD data. Ber Meteorol Inst Univ Freiburg 17:179–189

    Google Scholar 

  • Enke W (2003) Anwendung einer Wetterlagenklassifikation für Süddeutschland auf Kontrolllauf und Szenario eines transienten ECHAM4 Klimasimulationslaufes (Szenario B2) zur Abschätzung regionaler Klimaänderungen für Süddeutschland. 2003 (Werkvertrag B. Nr. 50000099 KLIWA) – Forschungsbericht

  • Falarz M (2002) Long-term variability in reconstructed and observed snow cover over the last 100 winter seasons in Cracow and Zakopane (southern Poland). Clim Res 19:247–256

    Article  Google Scholar 

  • Feldmann H, Früh B, Schädler G, Panitz HJ, Keuler K, Jacob D, Lorenz P (2008) Evaluation of the precipitation for South-western Germany from high resolution simulations with regional climate models. Meteorol Z 17(4):455–465

    Article  Google Scholar 

  • Finnis J, Holland MM, Serreze MC, Cassano JJ (2007) Response of Northern Hemisphere extratropical cyclone activity and associated precipiation to climate change, as represented by the Community Climate System Model. J Geophys Res 112: doi:10.1029/2006JG000286

  • Gómez Martín MB (2004) An evaluation of the tourist potential of the climate in Catalonia (Spain): a regional study. Geogr Ann 86A(3):249–264

    Article  Google Scholar 

  • Harlfinger O (1991) Holiday biometeorology: a study of Palma de Majorca, Spain. GeoJournal 25:377–381

    Article  Google Scholar 

  • Höppe P (1999) The physiological equivalent temperature – a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43:71–75

    Article  Google Scholar 

  • IPCC (2001) Climate change 2001: the scientific basis. In: Houghton JT et al (eds) Contribution of the Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • IPCC (2007) Climate change 2007: The scientific basis. In: Solomon S, Qin D et al (eds) Contribution of the Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Jacob D (2001) A note on the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteorol Atmos Phys 77:61–73

    Article  Google Scholar 

  • Jacob D, Göttel H, Lorenz P, Pfeifer S (2006) Regional climate modelling. Terra Flops 8:4

    Google Scholar 

  • Jacob D, Bäring L, Christensen OB, Christensen JH, De Castro M, Deque M, Giorgi F, Hagemann S, Hirschi M, Jones R, Kjellström E, Lenderink G, Rockel B, Sanchez E, Schär C, Seneviratne S, Somot S, Van Ulden A, Van Den Hurk B (2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim Change 81:31–52

    Article  Google Scholar 

  • Jacob D, Göttel H, Kotlarski S, Lorenz P, Sieck K (2008) Klimaauswirkungen und Anpassung in Deutschland – Phase 1: Erstellung regionaler Klimaszenarien für Deutschland. Umweltbundesamt

  • Jendritzky G, Bucher K, Laschewski G, Schultz E, Staiger H (1998) Medizinische Klimatologie. In: Gutenbrunner C, Hildebrandt G (eds) (1998) Handbuch der Balneologie und medizinischen Klimatologie. Springer, Berlin, pp 477–598

  • Kharin VV, Zwiers FW (2000) Changes in the extremes in an ensemble of transient climate simulations with a coupled atmosphere-ocean GCM. J Climate 13(21):3670–3688

    Article  Google Scholar 

  • KLIWA (2006) Regionale Klimaszenarien für Süddeutschland – Abschätzung der Auswirkung auf den Wasserhaushalt. KLIWA-Berichte, Heft 9

  • Kulinat K, Steinecke A (1984) Geographie des Freizeit- und Fremdenverkehrs. Erträge der Forschung Band 212, Darmstadt

  • Lambert SJ, Fyfe JC (2006) Changes in winter cyclone frequencies and strengths simulated in enhanced greenhouse warming experiments: results from the models participating in the IPCC diagnostic exercise. Clim Dyn 26:713–728

    Article  Google Scholar 

  • Lin TP, Matzarakis A (2008) Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int J Biometeorol 52:281–290

    Google Scholar 

  • Majewski D (1991) The Europa-Modell of the Deutscher Wetterdienst. ECMWF Seminar on Numerical Methods in Atmospheric Models 2:147–191

    Google Scholar 

  • Matzarakis A (2006) Weather- and Climate-Related Information for Tourism. Tourism Hospitality Planning Dev 3:99–115

    Article  Google Scholar 

  • Matzarakis A (2007) Assessment method for climate and tourism based on daily data. In: Matzarakis A, de Freitas CR, Scott D (eds) Developments in tourism climatology, pp 52–58

  • Matzarakis A, Mayer H (1996) Another kind of environmental stress: thermal stress. WHO Newsl 18:7–10

    Google Scholar 

  • Matzarakis A, Rutz F, Mayer H (2007a) Modelling radiation fluxes in simple and complex environment-application of the RayMan model. Int J Biometeorol 51:323–334

    Article  Google Scholar 

  • Matzarakis A, Matuschek O, Neumcke R, Rutz F, Zalloom M (2007b) Climate change scenarios and tourism - how to handle and operate with data. In: Matzarakis A, de Freitas CR, Scott D (eds) Developments in tourism climatology, pp 240–245

  • Mieczkowski Z (1985) The tourism climatic index: a method of evaluating world climates for tourism. Géog Can 29(3):220–233

    Article  Google Scholar 

  • Müller HR, Weber F (2007) Klimaveränderungen und Tourismus. Szenarienanalyse für das Berner Oberland 2030. FIF Universität Bern, 2007

  • OECD (2007) Climate change in the european alps - adapting winter tourism and natural hazards management. OECD

  • Pinto JG, Ulbrich U, Leckebusch GC, Spangehl T, Reyers M, Zacharias S (2007) Changes in storm track and cyclone activity in three SRES ensemble experiments with the ECHAM5/MPI-OM1 GCM. Clim Dyn 29:195–210

    Article  Google Scholar 

  • PRUDENCE (2007) Prediction of regional Scenarios and Uncertainties for Defining European Climate Change Risks and Effects: the PRUDENCE Project. Clim Change 81(Suppl 1):1–371

    Google Scholar 

  • Roth R, Türk S, Armbruster F, Polenz R, Velten A, Schrahe C (2001) Masterplan Wintersport im Sauerland und Siegerland-Wittgenstein. Stufe 1, räumliche Entwicklungskonzep-tion und Marktanalyse, Köln

  • Roth R, Prinz N, Krämer A, Schneider C, Schönbein J (2005) Nachhaltige Entwicklung des Schneesports und des Wintersporttourismus in Baden-Württemberg. Ein Leitfaden für Politik, Sport, Kommunen und touristische Leistungsträger. Wirtschaftsministerium Baden-Württemberg

  • Scharlau K (1943) Die Schwüle als meßbare Größe. Bioklimat Beibl 10:19

    Google Scholar 

  • Schönbein J, Schneider C (2003) Snow cover variability in the Black Forest region as an example of a German low mountain range under the influence of climate change. Geophysical Research Abstracts. European Geophysical Union, Joint Assembly, Nice, France, 7–11. April 2003.

  • Stock M (2005) KLARA – Klimawandel, Auswirkungen, Risiken und Anpassung. PIK Report 99

  • Sturm M, Holmgren J, Liston GE (1995) A seasonal snow cover classification system for local to global applications. J Clim 8:1261–1283

    Article  Google Scholar 

  • UNEP (2007) Global outlook for snow and ice. UNEP Arendal/Nairobi 2007

  • UNWTO (2008) Climate Change and Tourism. Responding to global challenges. UNWTO

  • VDI (1998) VDI 3787 Blatt 2, Methoden zur human-biometeorologischen Bewertung von Klima und Lufthygiene für die Stadt- und Regionalplanung. Teil I: Klima. Beuth, Berlin

    Google Scholar 

  • Werner PC, Gerstengarbe F-W (1997) A proposal for the development of climate scenarios. Clim Res 8(2):171–182

    Article  Google Scholar 

  • Wilmanns O (2001) Exkursionsführer Schwarzwald - eine Einführung in Landschaft und Vegetation. Eugen Ulmer, Stuttgart

  • Zaninovic K, Matzarakis A (2009) The Biometeorological Leaflet as a means conveying climatological information to tourists and the tourism industry. Int J Biometeorol 53:369–374

    Article  Google Scholar 

  • Zebisch M, Grothmann T, Schröter D, Hasse C, Fritsch U, Cramer W (2005) Climate change in Germany – vulnerability and adaptation of climate sensitive sectors. Climate Change 10/05. Umweltbundesamt, Dessau

  • Yapp G, McDonald N (1978) A recreation climate model. J Environ Manag 7:235–252

    Google Scholar 

Download references

Acknowledgement

This research study is supported by the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF) under grant no. 01LS05019 within the scope of the research initiative „klimazwei“. Thanks to the German Weather Service for providing climate data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Matzarakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Endler, C., Oehler, K. & Matzarakis, A. Vertical gradient of climate change and climate tourism conditions in the Black Forest. Int J Biometeorol 54, 45–61 (2010). https://doi.org/10.1007/s00484-009-0251-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-009-0251-2

Keywords

Navigation