Skip to main content
Log in

Effects of an evaporative cooling system on plasma cortisol, IGF-I, and milk production in dairy cows in a tropical environment

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Access to an evaporative cooling system can increase production in dairy cows because of improved thermal comfort. This study aimed to evaluate the impact of ambient temperature on thermoregulation, plasma cortisol, insulin-like growth factor 1 (IGF-I), and productive status, and to determine the efficiency of an evaporative cooling system on physiological responses under different weather patterns. A total of 28 Holstein cows were divided into two groups, one with and the other without access to a cooling system with fans and mist in the free stall. The parameters were analyzed during morning (0700 hours) and afternoon milking (1430 hours) under five different weather patterns throughout the year (fall, winter, spring, dry summer, and rainy summer). Rectal temperature (RT), body surface temperature (BS), base of tail temperature (TT), and respiratory frequency (RF) were lower in the morning (P < 0.01). The cooling system did not affect RT, and both the groups had values below 38.56 over the year (P = 0.11). Cortisol and IGF-I may have been influenced by the seasons, in opposite ways. Cortisol concentrations were higher in winter (P < 0.05) and IGF-I was higher during spring-summer (P < 0.05). The air temperature and the temperature humidity index showed positive moderate correlations to RT, BS, TT, and RF (P < 0.001). The ambient temperature was found to have a positive correlation with the physiological variables, independent of the cooling system, but cooled animals exhibited higher milk production during spring and summer (P < 0.01).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alila-Johansson A, Eriksson L, Soveri T et al (2003) Serum cortisol levels in goats exhibit seasonal but not daily rhythmicity. Chronobiol Int 20:65–79

    Article  CAS  Google Scholar 

  • Andersson BE, Jónasson H (1993) Temperature regulation and environmental physiology. In: Swenson MJ, Reece WO (eds) Dukes’ physiology of domestic animals, 11th edn. Cornell University Press, New York, pp 886–895

    Google Scholar 

  • Arave CW, Albright JL (1981) Cattle behavior. J Dairy Sci 64:1318–1329

    Article  CAS  Google Scholar 

  • Arcaro I Jr, Arcaro JRP, Pozzi CR, Fava CD, Fagundes H, Matarazzo SV, De Oliveira JE (2005) Physiological responses of dairy cows to fan plus sprinklers in holding pens. Cienc Rural 35:639–643

    Article  Google Scholar 

  • Avendaño-Reyes L, Alvarez-Valenzuela FD, Correa-Calderón A, Saucedo-Quintero JS, Robinson PH, Fadel JG (2006) Effect of cooling Holstein cows during the dry period on postpartum performance under heat stress conditions. Livest Sci 105:198–206

    Article  Google Scholar 

  • Avendaño-Reyes L, Hernández-Rivera JA, Alvarez-Valenzuela FD, Macías-Cruz U, Díaz-Molina R, Correa-Calderón A, Robinson PH, Fadel JG (2011) Physiological and productive responses of multiparous lactating Holstein cows exposed to short-term cooling during severe summer conditions in an arid region of Mexico. Int J Biometeorol. doi:10.1007/s00484-011-0510-x

  • Baccari F Jr (2001) Manejo ambiental da vaca leiteira em climas quentes (in Portuguese). Ed. UEL, Londrina

  • Berman A (1968) Nychthermeral and seasonal patterns of thermoregulation in cattle. Aust J Agric Res 19:181–188

    Article  Google Scholar 

  • Berman A, Folman Y, Kaim M, Mamen M, Herz Z, Wolfenson D, Arieli A, Graber Y (1985) Upper critical temperatures and forced ventilation effects for high-yielding dairy cows in a subtropical environment. J Dairy Sci 68:1488–1495

    Article  CAS  Google Scholar 

  • Brown-Brandl TM, Eigenberg RA, Hahn GL, Nienaber JA, Mader TL, Spiers DE, Parkurst AM (2005) Analyses of thermoregulatory responses of feeder cattle exposed to simulated heat waves. Int J Biometeorol 49:285–296

    Article  CAS  Google Scholar 

  • Chaiyabutr N, Chanpongsang S, Suadsong S (2008) Effects of evaporative cooling on the regulation of body water and milk production in crossbred Holstein cattle in a tropical environment. Int J Biometeorol 52:575–585

    Article  CAS  Google Scholar 

  • Christison GI, Johnson HD (1972) Cortisol turnover in heat-stressed cows. J Anim Sci 35:1005–1010

    CAS  Google Scholar 

  • Collier RJ, Baumgard LH, Lock AL, Bauman DE (2004) Physiological limitations, nutrient partitioning. In: Wiseman J, Sylvestor R (eds) Yields of farmed species: constraints and opportunities in the 21st century. Nottingham University Press, Nottingham, pp 351–378

    Google Scholar 

  • Collier RJ, Dahl GE, Vanbaale MJ (2006) Major advances associated with environmental effects on dairy cattle. J Dairy Sci 89:1244–1253

    Article  CAS  Google Scholar 

  • Collier RJ, Miller MA, McLaughlin CL, Johnson HD, Baile CA (2008) Effects of recombinant bovine somatotropin (rbST) and season on plasma and milk insulin-like growth factors I (IGF-I) and II (IGF-II) in lactating dairy cows. Domest Anim Endocrinol 35:16–23

    Article  CAS  Google Scholar 

  • Correa-Calderon A, Armstrong D, Ray D, Denise S, Enns M, Howison C (2004) Thermoregulatory responses of Holstein and Brown Swiss heat-stressed dairy cows to two different cooling systems. Int J Biometeorol 48:42–148

    Google Scholar 

  • Dahl GE, Petitclerc D (2003) Management of photoperiod in the dairy herd for improved production and health. J Anim Sci 81:11–17

    CAS  Google Scholar 

  • Dahl GE, Elsasser TH, Capuco AV, Erdman RA, Peters RR (1997) Effects of a long daily photoperiod on milk yield and circulating concentrations of insulin-like growth factor-I. J Dairy Sci 80:2784–2789

    Article  CAS  Google Scholar 

  • Du Preez JH (2000) Parameters for determination and evaluation of heat stress in dairy cattle in South Africa. Onderstepoort J Vet Res 67:263–271

    Google Scholar 

  • Frazzi E, Calamari L, Calegari F, Stefanini L (2000) Behavior of dairy cows in response to different barn cooling systems. Trans ASAE 43:387–394

    Google Scholar 

  • Gorewit RC, Svennersten K, Butler W, Uvnas-Moberg K (1992) Endocrine responses in cows milked by hand and machine. J Anim Sci 75:443–448

    CAS  Google Scholar 

  • Hahn GL, Mader TL (1997) Heat waves in relation to thermoregulation, feeding behavior and mortality of feedlot cattle. Proceedings of the 5th International Livestock Environent Symposium, ASAE, St. Joseph, MI, pp 563–571

  • Hahn GL, Parkhurst AM, Gaughan JB (1997) Cattle respiration rate as a function of ambient temperature. Transactions of ASAE, St. Joseph, Paper n.MC, pp 97–121

  • Hirayama T, Katoh K, Obara Y (2004) Effects of heat exposure on nutrient digestibility, rumen contraction and hormone secretion in goats. Anim Sci J 75:237–243

    Article  Google Scholar 

  • Igono MO, Bjotvedt G, Sanford-Crane HT (1992) Environmental profile and critical temperature effects on milk production of Holstein cows in desert climate. Int J Biometeorol 36:77–87

    Article  CAS  Google Scholar 

  • Kadzere CT, Murphy MR, Silanikove N, Maltz E (2002) Heat stress in lactating dairy cows: a review. Livest Prod Sci 77:59–91

    Article  Google Scholar 

  • Kendall PE, Auchtung TL, Swanson KS, Radcliff RP, Lucy MC, Drackley JK, Dahl GE (2003) Effect of photoperiod on hepatic growth hormone receptor 1A expression in steer calves. J Anim Sci 81:1440–1446

    CAS  Google Scholar 

  • Martello LS, Savastano H Jr, Silva SL, Titto EAL (2004) Physiologic and performance responses of holstein cows in milking under different environments. Rev Bras Zootec 33:181–191. doi:10.1590/s1516-35982004000100022

    Article  Google Scholar 

  • Martello LS, Savastano H Jr, Silva SL, Balieiro JCC (2009) Alternative body sites for heat stress measurement in milking cows under tropical conditions and their relationship to the thermal discomfort of the animals. Int J Biometeorol 54:647–652. doi:10.1007/s00484-009-0268-6

    Article  Google Scholar 

  • Mashek DG, Ingvartsen KL, Andersen JB, Vestergaard M, Larsen T (2001) Effects of a four-day hyperinsulinemic-euglycemic clamp in early and mid-lactation dairy cows on plasma concentrations of metabolites, hormones, and binding proteins. Domest Anim Endocrinol 21:169–185

    Article  CAS  Google Scholar 

  • McGuire MA, Beede DK, Collier RJ, Buonomo FC, Delorenzo MA, Wilcox CJ, Huntington GB, Reynolds CK (1991) Effects of acute thermal stress and amount of feed intake on concentrations of somatotropin, insulin-like growth factor (IGF)-I and IGF-II, and thyroid hormones in plasma of lactating Holstein cows. J Anim Sci 69:2050–2056

    CAS  Google Scholar 

  • Muller CJC, Botha JA (1993) Effect of summer climatic conditions on different heat tolerance indicators in primiparous Friesian and Jersey cows. S AfrJ Anim Sci 23:98–103

    Google Scholar 

  • Naunheimer-Thoneick H, Thomas CK, Weniger JH (1988) Untersuchungen zum Ener-gieumsatz von laktierenden Kühen unter Wärmebelastung. III. Der Effekt von langzeitig hoher Umgebungstemperatur auf Parameter der Thermoregulation, Futteraufnahme und Milchleis-tung. Zuchtungskunde 60:376–387

    Google Scholar 

  • Negrão JA, Marnet PG (2006) Milk yield, residual milk, oxytocin and cortisol release during machine milking in Gir, Gir x Holstein and Holstein cows. Reprod Nutr Dev 46:77–85. doi:10.1051/rnd:2005068

    Article  Google Scholar 

  • NRC (2001) Nutrient requirements of dairy cattle, 7th edn. National Acadmy Press, Washington, DC

    Google Scholar 

  • Portugal JAB, Pires MFA, Duraes MC (2000) Efeito da temperatura ambiente e da umidade relativa do ar sobre a frequência de ingestão de alimentos e de água e de ruminação em vacas da raça Holandesa. Arq Bras Med Vet Zootec 52:154–159. doi:10.1590/s0102-09352000000200013

    Article  Google Scholar 

  • Prosser CL, Brown FA (1969) Comparative animal physiology. Saunders, London

    Google Scholar 

  • Ravagnolo O, Misztal I (2002) Studies on genetics of heat tolerance in dairy cattle with reduced weather information via cluster analysis. J Dairy Sci 85:1586–1589. doi:10.3168/jds.s0022-0302(02)74228-8

    Article  CAS  Google Scholar 

  • Rhoads ML, Kim JW, Collier RJ, Crooker BA, Boisclair YR, Baumgard LH, Rhoads RP (2010) Effect of heat stress and nutrition on lactating Holstein cows: II. Aspects of hepatic growth hormone responsiveness. J Dairy Sci 93:170–179. doi:10.3168/jds.2009-2469

    Article  CAS  Google Scholar 

  • Ronchi B, Stradaioli G, Verini Supplizi A, Bernabucci U, Lacetera N, Accorsi PA, Nardone A, Seren E (2001) Influence of heat stress or feed restriction on plasma progesterone, oestradiol-17β, LH, FSH, prolactin and cortisol in Holstein heifers. Livest Prod Sci 68:231–241

    Article  Google Scholar 

  • Spain JN, Spiers D (1998) Effect of fan cooling on thermoregulatory responses of lactating dairy cattle to moderate heat stress. Proceedings of the 4th International Dairy Housing Conference. ASAE, St Joseph, MI, pp 232–238

  • Spiers DE, Spain JN, Sampson JD, Rhoads RP (2004) Use of physiological parameters to predict milk yield and feed intake in heat-stressed dairy cows. J Thermal Biol 29:759–764

    Article  Google Scholar 

  • Tancin V, Harcek L, Broucek J, Uhrincat M, Mihina S (1995) Effect of suckling during early lactation and changeover to machine milking on plasma oxytocin and cortisol levels and milking characteristics in Holstein cows. J Dairy Res 62:249–256

    Article  CAS  Google Scholar 

  • Tapki I, Sahin A (2006) Comparison of the thermoregulatory behaviours of low and high producing dairy cows in a hot environment. Appl Anim Behav Sci 99:1–11. doi:10.1016/j.applanim.2005.10.003

    Article  Google Scholar 

  • Thom EC (1959) The discomfort index. Weatherwise 12:57–59

    Article  Google Scholar 

  • Webster AJF, Osuje PO, Weekes TEC (1976) Origins of the heat increment of feeding in sheep. Proceedings: Energy metabolism of farm animals. EAAP, France, pp 45–53

  • Weldy JR, McDowell RE, Bond J, Van Soest PJ (1964) Responses of winter-conditioned heifers under prolonged heat stress. J Dairy Sci 47:691–692

    Google Scholar 

  • West J (2003) Effects of heat-stress on production in dairy cattle. J Dairy Sci 86:2131–2144. doi:10.3168/jds.s0022-0302(03)73803-x

    Article  CAS  Google Scholar 

  • Wise ME, Armstrong DV, Huber JT, Hunter R, Wiersma F (1988) Hormonal alterations in the lactating dairy cow in response to thermal stress. J Dairy Sci 71:2480–2485

    Article  CAS  Google Scholar 

  • Zähner M, Schrader L, Hauser R, Keck M, Langhans W, Wechsler B (2004) The influence of climatic conditions on physiological and behavioural parameters in dairy cows kept in open stables. Anim Sci 78:139–147

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiane Gonçalves Titto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Titto, C.G., Negrão, J.A., Titto, E.A.L. et al. Effects of an evaporative cooling system on plasma cortisol, IGF-I, and milk production in dairy cows in a tropical environment. Int J Biometeorol 57, 299–306 (2013). https://doi.org/10.1007/s00484-012-0554-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-012-0554-6

Keywords

Navigation