Skip to main content
Log in

Consistency issues of interval pairwise comparison matrices

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper, we investigate the consistency issues of interval pairwise comparison matrices in detail. Using logarithmic Manhattan distance to define the deviation degree of a pairwise comparison matrix to consistent pairwise comparison matrices, we propose a new consistency index of pairwise comparison matrices. Based on this consistency index of pairwise comparison matrices, we develop a consistency index of interval pairwise comparison matrices. Several desired properties of the proposed consistency indexes are presented. Furthermore, linear programming (LP) models are developed to compute the consistency indexes. Then, we propose a LP-based consistency improving model, which optimally preserves original pairwise comparison information in improving consistency. Meanwhile, considering the uncertainty plays an important role in the consistency index of interval pairwise comparison matrices, this consistency improving model is extended to simultaneously manage the uncertain degree in interval pairwise comparison matrices. Finally, we discuss the consistency-based prioritization method, and propose the strong consistency index of interval pairwise comparison matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguarón J, Moreno-Jiménez JM (2003) The geometric consistency index: approximated thresholds. Eur J Oper Res 147:137–145

    Article  Google Scholar 

  • Alonso JA, Lamata MT (2006) Consistency in the analytic hierarchy process: a new approach. Int J Uncertain Fuzziness Knowl Based Syst 14(4):445–459

    Article  Google Scholar 

  • Alonso S, Chiclana F, Herrera F, Herrera-Viedma E, Alcal\(\acute{a}\)-Fdez J, Porcel C (2008) A consistency-based procedure to estimate missing pairwise preference values. Int J Intell Syst 23:155–175

  • Alonso S, Cabrerizo FJ, Chiclana F, Herrera F, Herrera-Viedma E (2009) Group decision-making with incomplete fuzzy linguistic preference relations. Int J Intell Syst 24:201–222

    Article  Google Scholar 

  • Alonso S, Pérez IJ, Cabrerizo FJ, Herrera-Viedma E (2013) A linguistic consensus model for Web 2.0 communities. Appl Soft Comput 13:149–157

    Article  Google Scholar 

  • Apostolou B, Hassell JM (2002) Note on consistency ratio: a reply. Math Comput Model 35:1081–1083

    Article  Google Scholar 

  • Arbel A (1989) Approximate articulation of preference and priority derivation. Eur J Oper Res 43:317–326

    Article  MathSciNet  Google Scholar 

  • Arbel A (1991) A linear programming approach for processing approximate articulation of preference. In: Korhonen P, Lewandowski A, Wallenius J (eds) Multiple criteria decision support. Lecture Notes in Economics and Mathematical Systems, vol 356. Springer, Berlin, pp 79–86

  • Arbel A, Vargas LG (1993) Preference simulation and preference programming: robustness issues in priority deviation. Eur J Oper Res 69:200–209

    Article  Google Scholar 

  • Barrenechea E, Fernandez J, Pagola M, Chiclana F, Bustince H (2014) Construction of interval-valued fuzzy preference relations from ignorance functions and fuzzy preference relations. Knowl Based Syst 58:33–44

    Article  Google Scholar 

  • Bozóki S, F\(\ddot{u}\)l\(\ddot{o}\)p J, Koczkodaj WW (2011) An LP-based inconsistency monitoring of pairwise comparison matrices. Math Comput Model 54:789–793

  • Brunelli M, Canal L, Fedrizzi M (2013) Inconsistency indices for pairwise comparison matrices: a numerical study. Ann Oper Res 211(1):493–509

    Article  MathSciNet  Google Scholar 

  • Cabrerizo FJ, Herrera-Viedma E, Pedrycz W (2013) A method based on PSO and granular computing of linguistic information to solve group decision making problems defined in heterogeneous contexts. Eur J Oper Res 230:624–633

    Article  MathSciNet  Google Scholar 

  • Cabrerizo FJ, Moreno JM, Pérez IJ, Herrera-Viedma E (2010a) Analyzing consensus approaches in fuzzy group decision making: advantages and drawbacks. Soft Comput 14:451–463

    Article  Google Scholar 

  • Cabrerizo FJ, Pérez IJ, Herrera-Viedma E (2010b) Managing the consensus in group decision making in an unbalanced fuzzy linguistic context with incomplete information. Knowl Based Syst 23:169–181

    Article  Google Scholar 

  • Chiclana F, Herrera F, Herrera-Viedma E (1998) Integrating three representation models in fuzzy multipurpose decision making based on fuzzy preference relations. Fuzzy Sets Syst 97:33–48

    Article  MathSciNet  Google Scholar 

  • Chiclana F, Herrera F, Herrera-Viedma E (2001) Integrating multiplicative preference relations in a multipurpose decision-making model based on fuzzy preference relations. Fuzzy Sets Syst 122:277–291

    Article  MathSciNet  Google Scholar 

  • Chiclana F, Herrera-Viedma E, Alonso S, Herrera F (2009) Cardinal consistency of reciprocal preference relations: a characterization of multiplicative transitivity. IEEE Trans Fuzzy Syst 17:14–23

    Article  Google Scholar 

  • Chiclana F, Tapia Garcia JM (2013) A statistical comparative study of different similarity measures of consensus in group decision making. Inf Sci 221:110–123

    Article  MathSciNet  Google Scholar 

  • Cao D, Leung LC, Law JS (2008) Modifying inconsistent comparison matrix in analytic hierarchy process: a heuristic approach. Decis Support Syst 44:944–953

    Article  Google Scholar 

  • Chandran B, Golden B, Wasil E (2005) Linear programming models for estimating weights in the analytic hierarchy process. Comput Oper Res 32:2235–2254

    Article  Google Scholar 

  • Choo EU, Wedley WC (2004) A common framework for deriving preference values from pairwise comparison matrices. Comput Oper Res 31:893–908

    Article  Google Scholar 

  • Conde E, Pérez M (2010) A linear optimization problem to derive relative weights using an interval judgement matrix. Eur J Oper Res 201:537–544

    Article  Google Scholar 

  • Cox MAA (2007) Examining alternatives in the interval analytic hierarchy process using complete enumeration. Eur J Oper Res 180:957–962

    Article  Google Scholar 

  • Crawford G, Williams C (1985) A note on the analysis of subjective judgement matrices. J Math Psychol 29:387–405

    Article  Google Scholar 

  • Chu P, Liu JKH (2002) Note on consistency ratio. Math Comput Model 35:1077–1080

    Article  Google Scholar 

  • Dantzig GB (1963) Linear programming and extensions. Princeton University Press, New York

    Google Scholar 

  • Dong YC, Fan Z, Yu S (2014) Consensus building in a local context for the AHP-GDM with the individual numerical scale and prioritization method. IEEE Trans Fuzzy Syst. doi:10.1109/TFUZZ.2014.2312974

  • Dong YC, Hong WC, Xu YF (2013) Measuring consistency of linguistic preference relations: a 2-tuple linguistic approach. Soft Comput 17(11):2117–2130

    Article  Google Scholar 

  • Dong YC, Hong WC, Xu YF, Yu S (2011) Selecting the individual numerical scale and prioritization method in the analytic hierarchy process: a 2-tuple fuzzy linguistic approach. IEEE Trans Fuzzy Syst 19:13–26

    Article  Google Scholar 

  • Dong YC, Hong WC, Xu YF, Yu S (2013) Numerical scales generated individually for analytic hierarchy process. Eur J Oper Res 229:654–662

    Article  MathSciNet  Google Scholar 

  • Dong YC, Xu YF, Li HY (2008) On consistency measures of linguistic preference relations. Eur J Oper Res 189:430–444

    Article  MathSciNet  Google Scholar 

  • Dong YC, Xu YF, Li HY, Dai M (2008) A comparative study of the numerical scales and the prioritization methods in AHP. Eur J Oper Res 186:229–242

    Article  MathSciNet  Google Scholar 

  • Dong YC, Xu YF, Yu S (2009) Linguistic multiperson decision making based on the use of multiple preference relations. Fuzzy Sets Syst 160:603–623

    Article  MathSciNet  Google Scholar 

  • Dong YC, Zhang GQ, Hong WC, Xu YF (2010) Consensus models for AHP group decision making under row geometric mean prioritization method. Decis Support Syst 49:281–289

    Article  Google Scholar 

  • Escobar MT, Aguarón J, Moreno-Jiménez JM (2004) A note on AHP group consistency for the row geometric mean priorization procedure. Eur J Oper Res 153:318–322

    Article  Google Scholar 

  • Fedrizzi M, Giove S (2007) Incomplete pairwise comparison and consistency optimization. Eur J Oper Res 183:303–313

    Article  Google Scholar 

  • Finan JS, Hurley WJ (1997) The analytic hierarchy process: does adjusting a pairwise comparison matrix to improve the consistency ratio help. Comput Oper Res 24:749–755

    Article  Google Scholar 

  • Golden BL, Wang Q (1989) An alternate measure of consistency. In: Golden BL, Wasil EA, Harker PT (eds) The analytic hierarchy process: applications and studies. Springer, Berlin

  • Haines LM (1998) A statistical approach to the analytic hierarchy process with interval judgments. (I) distributions on feasible regions. Eur J Oper Res 110:112–125

    Article  Google Scholar 

  • Herrera-Viedma E, Cabrerizo FJ, Kacprzyk J, Pedrycz W (2014) A review of soft consensus models in a fuzzy environment. Inf Fusion 17:4–13

    Article  Google Scholar 

  • Herrera-Viedma E, Chiclana F, Herrera F, Alonso S (2007) Group decision-making model with incomplete fuzzy preference relations based on additive consistency. IEEE Trans Syst Man Cybern Part B Cybern 31(2):227–234

    Article  Google Scholar 

  • Herrera-Viedma E, Herrera F, Chiclana F, Luque M (2004) Some issues on consistency of fuzzy preference relations. Eur J Oper Res 154:98–109

    Article  MathSciNet  Google Scholar 

  • Islam R, Biswal MP, Alam SS (1997) Preference programming and inconsistent interval judgments. Eur J Oper Res 97:53–62

    Article  Google Scholar 

  • Koczkodaj WW (1993) A new definition of consistency of pairwise comparisons. Math Comput Model 18:79–84

    Article  Google Scholar 

  • Kress M (1991) Approximate articulation of preference and priority derivation: a comment. Eur J Oper Res 52:382–383

    Article  Google Scholar 

  • Lan JB, Lin J, Cao LJ (2009) An information mining method for deriving weights from an interval comparison matrix. Math Comput Model 50:393–400

    Article  MathSciNet  Google Scholar 

  • Lane EF, Verdini WA (1989) A consistency test for AHP decision makers. Decis Sci 20:575–590

    Article  Google Scholar 

  • Liu F (2009) Acceptable consistency analysis of interval reciprocal comparison matrices. Fuzzy Sets Syst 160:2686–2700

    Article  Google Scholar 

  • Mikhailov L (2002) Fuzzy analytical approach to partnership selection in formation of virtual enterprises. Omega 30:393–401

    Article  Google Scholar 

  • Mikhailov L (2004) A fuzzy approach to deriving priorities from interval pairwise comparison judgments. Eur J Oper Res 159:687–704

    Article  Google Scholar 

  • Moreno-Jiménez JM, Aguarón J, Escobar MT (2008) The core of consistency in AHP-group decision making. Group Decis Negotiat 17:249–265

    Article  Google Scholar 

  • Peláez JI, Lamata MT (2003) A new measure of consistency for positive reciprocal matrices. Comput Math Appl 46:1839–1845

    Article  MathSciNet  Google Scholar 

  • Pérez IJ, Cabrerizo FJ, Alonso S, Herrera-Viedma E (2014) A new consensus model for group decision making problems with non homogeneous experts. IEEE Trans Syst Man Cybern Syst 44:494–498

    Article  Google Scholar 

  • Pérez IJ, Cabrerizo FJ, Herrera-Viedma E (2010) A mobile decision support system for dynamic group decision making problems. IEEE Trans Syst Man Cybern Part A Syst Hum 40:1244–1256

    Article  Google Scholar 

  • Pérez IJ, Wikstr\(\ddot{o}\)m R, Mezei J, Carlsson C, Herrera-Viedma E (2013) A new consensus model for group decision making using fuzzy ontology. Soft Comput 17:1617–1627

  • Podinovski VV (2007) Interval articulation of superiority and precise elicitation of priorities. Eur J Oper Res 180:406–417

    Article  MathSciNet  Google Scholar 

  • Saaty TL (1977) A scaling method for priorities in hierarchical structures. J Math Psychol 15:234–281

    Article  MathSciNet  Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New York

    Google Scholar 

  • Saaty TL (2003) Decision-making with the AHP: why is the principal eigenvector necessary. Eur J Oper Res 145:85–91

    Article  MathSciNet  Google Scholar 

  • Saaty TL, Vargas LG (1987) Uncertainty and rank order in the analytic hierarchy process. Eur J Oper Res 32:107–117

    Article  MathSciNet  Google Scholar 

  • Srdjevic B (2005) Combining different prioritization methods in the analytic hierarchy process synthesis. Comput Oper Res 32:1897–1919

    Article  Google Scholar 

  • Srdjevic B, Srdjevic Z (2013) Synthesis of individual best local priority vectors in AHP-group decision making. Appl Soft Comput 13:2045–2056

  • Salo A, Hämäläinen RP (1992) Processing interval judgments in the analytic hierarchy process. In: Goicoechea A, Duckstein L, Zoints S (eds) Multiple criteria decision making. Proceedings of the ninth international conference held in Fairfax. Springer, New York, pp 359–372

  • Sugihara K, Ishii H, Tanaka H (2004) Interval priorities in AHP by interval regression analysis. Eur J Oper Res 158:745–754

    Article  MathSciNet  Google Scholar 

  • Stein WE, Mizzi PJ (2007) The harmonic consistency index for the analytic hierarchy process. Eur J Oper Res 177(1):488–497

    Article  Google Scholar 

  • Tapia García JM, Del Moral MJ, Martínez MA, Herrera-Viedma E (2012) A consensus model for group decision-making problems with interval fuzzy preference relations. Int J Inf Technol Decis Mak 11(4):709–725

    Article  Google Scholar 

  • Wang YM, Yang JB, Xu DL (2005a) A two-stage logarithmic goal programming method for generating weights from interval comparison matrices. Fuzzy Sets Syst 152:475–498

    Article  MathSciNet  Google Scholar 

  • Wang YM, Yang JB, Xu DL (2005b) Interval weight generation approaches based on consistency test and interval comparison matrices. Appl Math Comput 167:252–273

    Article  MathSciNet  Google Scholar 

  • Wang YM (2006) On lexicographic goal programming method for generating weights from inconsistent interval comparison matrices. Appl Math Comput 173:985–991

    Article  MathSciNet  Google Scholar 

  • Wang YM, Elhag TMS (2007) A goal programming method for obtaining interval weights from an interval comparison matrix. Eur J Oper Res 177:458–471

    Article  Google Scholar 

  • Wu J, Chiclana F (2014) A social network analysis trust-consensus based approach to group decision-making problems with interval-valued fuzzy reciprocal preference relations. Knowl Based Syst 59:97–107

    Article  Google Scholar 

  • Xu Y, Li KW, Wang H (2013) Consistency test and weight generation for additive interval fuzzy preference relations. Soft Comput. doi:10.1007/s00500-013-1156-x

  • Xu Y, Wang H (2014) A comment on “Incomplete fuzzy linguistic preference relations under uncertain environments”. Inf Fusion 20:2–5

    Article  Google Scholar 

  • Xu ZS (2000) On consistency of the weighted geometric mean complex judgement matrix in AHP. Eur J Oper Res 126:683–687

    Article  Google Scholar 

  • Xu ZS, Wei CP (1999) A consistency improving method in analytic hierarchy process. Eur J Oper Res 116:443–449

    Article  Google Scholar 

  • Zhang GQ, Dong YC, Xu YF (2014) Consistency and consensus measures for linguistic preference relations based on distribution assessments. Inf Fusion 17:46–55

    Article  Google Scholar 

Download references

Acknowledgments

Yucheng Dong would like to acknowledge the financial support of a Grant (No. 71171160) from NSF of China, and a Grant (No. skqx201308) from Sichuan University. Yinfeng Xu would like to acknowledge the financial support of Grants (Nos. 71071123 and 61221063) from NSF of China and acknowledge the financial support of program for Changjiang Scholars and Innovative Research Team in University (IRT1173) from Ministry of Education of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yucheng Dong.

Additional information

Communicated by V. Loia.

Appendices

Appendix A: Proofs

The proof of Proposition 1.

Proof

Without loss of generality, let \(w^{*}\!=\!(w^{*}_{1}, w^{*}_{2},\ldots ,w^{*}_{n})^{T}\) \(\in Q_{n}\), and

$$\begin{aligned} \mathrm{GCI}(A)=\frac{1}{n^{2}}\sum _{i=1}^{n}\sum _{j=1}^{n} (\log (a_{ij})-\log (w^{*}_{i})+\log (w^{*}_{j}))^{2}.\nonumber \\ \end{aligned}$$
(77)

Let \(W^{*}=(w^{*}_{ij})_{n\times n}=(\frac{w^{*}_{i}}{w^{*}_{j}})\), we easily find that \(W^{*}\in M_{n}\). From (3), we obtain

$$\begin{aligned} \mathrm{GCI}(A)&= \frac{1}{n^{2}}\sum _{i=1}^{n}\sum _{j=1}^{n} (\log (a_{ij})-\log (w_{ij}^{*}))^{2}\nonumber \\&\ge \frac{1}{n^{2}}\underset{P\in M_{n}}{\min }\sum _{i=1}^{n}\sum _{j=1}^{n} (\log (a_{ij})-\log (p_{ij}))^{2}\nonumber \\&= \mathrm{CI}(A). \end{aligned}$$
(78)

Without loss of generality, let \(\overline{P}=(\overline{p_{ij}})_{n\times n}\in M_{n}\), satisfying

$$\begin{aligned} \mathrm{CI}(A)=\frac{1}{n^{2}}\sum _{i=1}^{n}\sum _{j=1}^{n} (\log (a_{ij})-\log (\overline{p_{ij}}))^{2}. \end{aligned}$$
(79)

Let \(\overline{w}=(\overline{w_{1}}, \overline{w_{2}},\ldots ,\overline{w_{n}})^{T}\in Q_{n}\) be the priorities, obtained from \(\overline{P}\) using the row geometric mean prioritization method. Since \(\overline{P}\in M_{n}\), according to the row geometric mean prioritization method, we have \(\overline{p_{ij}}=\frac{\overline{w_{i}}}{\overline{w_{j}}}\). Consequently,

$$\begin{aligned} \mathrm{CI}(A)&= \frac{1}{n^{2}}\sum _{i=1}^{n}\sum _{j=1}^{n} (\log (a_{ij})-\log (\overline{w_{i}})+\log (\overline{w_{j}}))^{2}\nonumber \\&\ge \frac{1}{n^{2}}\underset{w\in Q_{n}}{\min }\sum _{i=1}^{n}\sum _{j=1}^{n} (\log (a_{ij})-\log (w_{i})+\log (w_{j}))^{2}\nonumber \\&= \mathrm{GCI}(A). \end{aligned}$$
(80)

Based on (78) and (80), we have \(\mathrm{CI}(A)=\mathrm{GCI}(A)\) when the distance between two pairwise comparison matrices uses the logarithmic Euclidean distance metric.

\(\square \)

The proof of Property 2

If \(\{w^{*}_{1}, w^{*}_{2},\ldots ,w^{*}_{n}\}\in Q_{n}\) satisfies \(v^{-}_{ij}\le \frac{w^{*}_{i}}{w^{*}_{j}}\le v^{+}_{ij}\), for \(i,j=1,2,\ldots ,n\). Let \(W^{*}=(w^{*}_{ij})_{n\times n}=(\frac{w_{i}^{*}}{w_{j}^{*}})_{n\times n}\). Then, we have that \(W^{*}\in M_{n}\) and \(W^{*}\in N_{\widetilde{V}}\). According to Definition 9, we obtain \(\mathrm{ICI}(\widetilde{V})=0\). Similarly, if \(\mathrm{ICI}(\widetilde{V})=\mathrm{CI}(W^{*})=0\), we can prove that \(\exists \{w_{1}, w_{2},\ldots ,w_{n}\}\in Q_{n}\) satisfy \(v^{-}_{ij}\le \frac{w_{i}}{w_{j}}\le v^{+}_{ij}\), for \(i,j=1,2,\ldots ,n\). This completes the proof of Property 2.   \(\square \)

The proof of Property 3

According to Definition 5, we easily find that \(\widetilde{C}\) is an interval pairwise comparison matrix. Let \(A^{*}=(a_{ij}^{*})_{n\times n}\in N_{\widetilde{V}}\), \(P^{*}=(p_{ij}^{*})_{n\times n}\in M_{n}\), and

$$\begin{aligned} \mathrm{ICI}(\widetilde{V})=\frac{1}{n^{2}}\sum _{i=1}^{n}\sum _{j=1}^{n}|\log (a_{ij}^{*})-\log (p_{ij}^{*})|. \end{aligned}$$
(81)

Let \(A^{**}=(a_{ij}^{**})_{n\times n}\in N_{\widetilde{F}}\), \(P^{**}=(p_{ij}^{**})_{n\times n}\in M_{n}\), and

$$\begin{aligned} \mathrm{ICI}(\widetilde{F})=\frac{1}{n^{2}}\sum _{i=1}^{n}\sum _{j=1}^{n}|\log (a_{ij}^{**})-\log (p_{ij}^{**})|. \end{aligned}$$
(82)

Based on \(A^{*}\) and \(A^{**}\), we construct a new pairwise comparison matrix \(A^{c}=(a_{ij}^{c})_{n\times n}\), where \(a_{ij}^{c}=(a_{ij}^{*})^{\alpha }\times (a_{ij}^{**})^{(1-\alpha )}\). We easily prove that \(A^{c}\in N_{\widetilde{C}}\). Based on \(P^{*}\) and \(P^{**}\), we construct a new pairwise comparison matrix \(P^{c}=(p_{ij}^{c})_{n\times n}\), where \(p_{ij}^{c}=(p_{ij}^{*})^{\alpha }\times (p_{ij}^{**})^{(1-\alpha )}\). We easily prove that \(P^{c}\in M_{n}\). According to Definition 9, we have

$$\begin{aligned} \mathrm{ICI}(\widetilde{C})&\le \frac{1}{n^{2}}\sum _{i=1}^{n}\sum _{j=1}^{n}|\log (a_{ij}^{c})-\log (p_{ij}^{c})|\nonumber \\&= \frac{1}{n^{2}}\sum _{i=1}^{n}\sum _{j=1}^{n}|\alpha (\log (a_{ij}^{*})-\log (p_{ij}^{*}))\nonumber \\&\quad +(1-\alpha )(\log (a_{ij}^{**})-\log (p_{ij}^{**}))| \end{aligned}$$
(83)

From (81)–(83), we have that

$$\begin{aligned} \mathrm{ICI}(\widetilde{C})&\le \alpha \mathrm{ICI}(\widetilde{V})+(1-\alpha )\mathrm{ICI}(\widetilde{F})\nonumber \\&\le \max \{\mathrm{ICI}(\widetilde{V}), \mathrm{ICI}( \widetilde{F})\}, \end{aligned}$$
(84)

which completes the proof of Property 3. \(\square \)

The proof of Property 4

For any \(A\in N_{\widetilde{V}}\), we find \(A\in N_{\widetilde{F}}\) under the condition that \(f_{ij}^{-}\le v_{ij}^{-}\) and \(f_{ij}^{+}\ge v_{ij}^{+}\). Thus, \(N_{\widetilde{V}}\subseteq N_{\widetilde{F}}\). According to Definition 9, we have \(\mathrm{ICI}(\widetilde{F})\le \mathrm{ICI}(\widetilde{V}).\) This completes the proof of Property 4. \(\square \)

The proof of Proposition 3

In \(P_{1}\), constraints (13)–(14) guarantee that \(P=(p_{ij})_{n\times n}\in M_{n}\). Constraints (15)–(17) enforce that \(d_{ij}\ge |c_{ij}|=|\log (a_{ij})-\log (p_{ij})|\). According to the objective function (i.e., Eq. (12)), any feasible solutions with \(d_{ij}>|c_{ij}|\) are not the optimal solution to \(P_{1}\). Thus, constraints (15)–(17) guarantee that \(d_{ij}=|c_{ij}|=|\log (a_{ij})-\log (p_{ij})|\) and \(\mathrm{CI}(A)=\min \frac{1}{n^{2}}\sum _{i=1}^{n}\sum _{j=1}^{n} d_{ij}\). As a result, model (9) can be equivalently described as \(P_{1}\). This completes the proof of Proposition 3. \(\square \)

The proof of Proposition 4

In \(P_{2}\), constraints (19)–(21) guarantee that \(A=(a_{ij})_{n\times n}\in N_{\widetilde{V}}\), and constraints (22)–(23) guarantee that \(P=(p_{ij})_{n\times n}\in M_{n}\). Constraints (24)–(26) enforce that \(d_{ij}\ge |c_{ij}|=|\log (a_{ij})-\log (p_{ij})|\). According to the objective function (i.e., Eq. (18)), any feasible solutions with \(d_{ij}>|c_{ij}|\) are not the optimal solution to \(P_{2}\). Thus, constraints (24)–(26) guarantee that \(d_{ij}=|c_{ij}|=|\log (a_{ij})-\log (p_{ij})|\) and \(\mathrm{ICI}(\widetilde{V})=\min \frac{1}{n^{2}}\sum _{i=1}^{n}\sum _{j=1}^{n} d_{ij}\). As a result, model (11) can be equivalently described as \(P_{2}\). This completes the proof of Proposition 4. \(\square \)

The proof of Lemma 1

Constraints (41)–(43) enforce that \(d_{ij}\ge |c_{ij}|=|\log (a_{ij})-\log (p_{ij})|\). According to Definition 9, \(\mathrm{ICI}(\widetilde{V^{*}})\le \frac{1}{n^{2}}\sum _{i=1}^{n}\sum _{j=1}^{n} d_{ij}\). Thus, constraint (40) guarantees \(\mathrm{ICI}(\widetilde{V^{*}})\le \overline{\mathrm{ICI}}\). This completes the proof of Lemma 1. \(\square \)

The proof of Proposition 5

In \(P_{3}\), constraints (33)–(34) guarantee that \(\widetilde{V^{*}}\) is an interval pairwise comparison matrix. Constraints (35)–(37) guarantee that \(A=(a_{ij})_{n\times n}\in N_{\widetilde{V^{*}}}\), and constraints (38)–(39) guarantee that \(P=(p_{ij})_{n\times n}\in M_{n}\). From Lemma 1, constraints (40)–(43) guarantee \(\mathrm{ICI}(\widetilde{V^{*}})\le \overline{\mathrm{ICI}}\). Moreover, constraints (44)–(45) guarantee \(\mathrm{UI}(\widetilde{V^{*}})\le L\), and constraints (46)–(48) enforce that \(h_{ij}\ge |g_{ij}|=|\log (v^{+}_{ij})-\log (v^{*+}_{ij})|\). According to the objective function (i.e., Eq. (32)), any feasible solutions with \(h_{ij}>|g_{ij}|\) are not the optimal solution to \(P_{3}\). Thus, constraints (46)–(48) guarantee that \(h_{ij}=|g_{ij}|=|\log (v^{+}_{ij})-\log (v^{*+}_{ij})|\). Similarly, constraints (49)–(51) guarantee that \(m_{ij}=|l_{ij}|=|\log (v^{-}_{ij})-\log (v^{*-}_{ij})|\). As a result,

$$\begin{aligned} \frac{1}{2n^{2}}\sum _{i=1}^{n}\sum _{j=1}^{n}(h_{ij}+m_{ij})&= \frac{1}{2n^{2}}\sum _{i=1}^{n}\sum _{j=1}^{n}( |\log (v^{+}_{ij})-\log (v^{*+}_{ij})|\nonumber \\&\quad +|\log (v^{-}_{ij})-\log (v^{*-}_{ij})|). \end{aligned}$$
(85)

Thus, model (31) can be equivalently described as \(P_{3}\). This completes the proof of Proposition 5. \(\square \)

The proof of Proposition 6

From constraints (44)–(45), \(\widetilde{V^{*}}\) degenerates to a pairwise comparison matrix when \(L=0\). According to constraints (35)–(37), we have \(\widetilde{V^{*}}=A=(a_{ij})_{n\times n}\), i.e., \(v_{ij}^{*-}=v_{ij}^{*+}=a_{ij}\). When \(\overline{\mathrm{ICI}}=0\), constraints (40)–(43) guarantee that \(\widetilde{V^{*}}\) is a consistent pairwise comparison matrix, that is \(\widetilde{V^{*}}=P=(p_{ij})_{n\times n}\). Further, according to constraints (46)–(48) and the objective function (i.e., Eq. (32)), we have \(h_{ij}=|g_{ij}|=|\log (v^{+}_{ij})-\log (p_{ij})|\). According to constraints (49)–(51) and the objective function (i.e., Eq. (32)), we also have \(m_{ij}=|l_{ij}|=|\log (v^{-}_{ij})-\log (p_{ij})|\). Since \(\widetilde{V}\) is a pairwise comparison matrix, we have \(v_{ij}^{-}=v_{ij}^{+}\), and \(h_{ij}=m_{ij}\). As a result, \(\mathrm{CI}(\widetilde{V})=\min \frac{1}{2n^{2}}\sum _{i=1}^{n}\sum _{j=1}^{n}(h_{ij}+m_{ij})\). In this way, \(P_{3}\) degenerates to \(P_{1}\). This completes the proof of Proposition 6. \(\square \)

The proof of Proposition 8

We only prove the existence of the optimal solution to \(P_{1}\). The existence of the optimal solutions to \(P_{2}\), \(P_{3}\) and \(P_{4}\) can be similarly proved. Any \(n\times n\) consistent pairwise comparison matrices satisfy all the constraints of \(P_{1}\), and therefore represent feasible solutions. So, \(P_{1}\) has a non-empty feasible region. A closed bounded feasible region for \(P_{1}\) would satisfy the assumption of Weierstrass theorem. This could be achieved, by introducing an upper bound for \(d_{ij}\). Let \(\overline{w}=(\overline{w_{1}}, \overline{w_{2}},\ldots ,\overline{w_{n}})^{T}\in Q_{n}\) be the priorities, obtained from \(A\) using the row geometric mean prioritization method, and \(\overline{P}=(\overline{p_{ij}})_{n\times n}=(\frac{\overline{w_{i}}}{\overline{w_{j}}})_{n\times n}\). According to the row geometric mean prioritization method, we have that \(\overline{p_{ij}}=\frac{\root n \of {\prod _{k=1}^{n}a_{ik}}}{\root n \of {\prod _{k=1}^{n}a_{jk}}}\), and \(\overline{P}\in M_{n}\) satisfies all the constraints of \(P_{1}\). Since \(c_{ij}=\log (a_{ij})-\log (p_{ij})\), a suitable inequality that does not affect the optimal solution could be

$$\begin{aligned} d_{ij}&\le |\log (a_{ij})-\log (\overline{p_{ij}})|\nonumber \\&= \left| \log (a_{ij})-\frac{1}{n}\sum _{k=1}^{n} \log (a_{ik})-\log (a_{jk})\right| . \end{aligned}$$
(86)

According to Weierstrass theorem, we prove the existence of the optimal solution to \(P_{1}\), which completes the proof of Proposition 8. \(\square \)

Appendix B: Establishing the ICI thresholds based on Golden and Wang’s approach

Property 4 shows that it is easier to obtain consistency, with the uncertain degree of interval pairwise comparison matrices increasing. In the following, we establish the ICI thresholds of interval pairwise comparison matrices, according to different uncertain indexes. When the uncertain index is \(L\), the ICI threshold is denoted as \(\overline{\mathrm{ICI}(L)}\). As mentioned earlier, establishing the thresholds of the AHP consistency indexes is an open question (Apostolou and Hassell 2002; Chu anad Liu 2002), and there is disagreement about how to establish these thresholds (e.g., Golden and Wang 1989; Lane and Verdini 1989), so the proposed \(\overline{\mathrm{ICI}(L)}\) should only be considered as a decision aid which decision makers use as a reference to obtain the acceptable consistency.

The main idea of establishing \(\overline{\mathrm{ICI}(L)}\) is inspired by the work of Golden and Wang (1989). When using Saaty’s consistency ratio rule (i.e., \(\le 0.1\)), Golden and Wang (1989) have found that the ratio of the acceptably consistent ones among random pairwise comparison matrices is over \(20\,\%\) for \(n=3\), and about \(4\,\%\) for \(n>3\). It is impossible to obtain a matrix consistency for \(n>5\). The detailed analysis also can be found in Peláez and Lamata (2003).

Here, the established thresholds \(\overline{\mathrm{ICI}(L)}\) guarantee the ratio of the acceptably consistent ones among random interval pairwise comparison matrices with the uncertain index \(L\) is constant and small, for different matrix sizes.

The procedure of establishing ICI thresholds is described as follows.

The procedure of establishing the ICI thresholds

Input: The matrix size \(n\), the number of random matrices \(m\), the established uncertain index \(L\in [0, 2\log (9)]\), and the parameters \(\alpha \)

Output: The ICI thresholds, \(\overline{\mathrm{ICI}(L)}\)

Step 1: For each \(n\), we, respectively, generate \(m\) pairwise comparison matrices \(\{A^{(1)},\ldots A^{(k)}, \ldots ,A^{(m)}\}\), whose entries are uniformly randomly generated using 1–9 scale.

Step 2: Based on \(A^{(k)}=(a_{ij}^{(k)})_{n\times n}\), we generate an interval pairwise comparison matrix \(\widetilde{V^{(k)}}=(\widetilde{v_{ij}^{k}})_{n\times n}\), where \(\widetilde{v_{ij}^{k}}=[v_{ij}^{k-}, v_{ij}^{k+}]\). We consider three cases:

Case A: \(\log (9)-\log (a^{(k)}_{ij})\ge L\) and \(\log (a^{(k)}_{ij})-\log (1/9)\ge L\). In this case, let \(t_{1}=a^{(k)}_{ij}\), and \(t_{2}\) is uniformly randomly selected from \(\{e^{L+\log (a^{(k)}_{ij})}, e^{\log (a^{(k)}_{ij})-L}\}\), where \(e\) is the base of natural logarithms.

Case B: \(\log (9)-\log (a^{(k)}_{ij})\ge L\) and \(\log (a^{(k)}_{ij})-\log (1/9)<L\). In this case, let \(t_{1}=a^{(k)}_{ij}\), and \(t_{2}=e^{L+\log (a^{(k)}_{ij})}\).

Case C: \(\log (9)-\log (a^{(k)}_{ij})<L\) and \(\log (a^{(k)}_{ij})-\log (1/9)\ge L\). In this case, let \(t_{1}=a^{(k)}_{ij}\), and \(t_{2}=e^{\log (a^{(k)}_{ij})-L}\).

Then, let \(v_{ij}^{k-}=\min \{t_{1}, t_{2}\}\) and \(v_{ij}^{k+}=\max \{t_{1}, t_{2}\}\).

Step 3: Compute \(\mathrm{ICI}(\widetilde{V^{(k)}}), k=1,2,\ldots ,m\), using \(P_{2}\).

Step 4: By sorting \(\{\mathrm{ICI}(\widetilde{V^{(1)}}),\ldots ,\mathrm{ICI}(\widetilde{V^{(m)}})\}\) in ascending order, we obtain \(\{b^{(1)},\ldots b^{(k)},\) \(\ldots ,b^{(m)}\}\), where \(b^{(k)}\) is the \(k\)th smallest element in \(\{\mathrm{ICI}(\widetilde{V^{(1)}}),\ldots , \mathrm{ICI}(\widetilde{V^{(m)}})\}\).

Step 5: Let \(k^{*}=round(m\times \alpha )\), where round is usual round operation. Output the threshold \(\overline{\mathrm{ICI}(L)}=b^{(k^{*})}\).

Note 6. In this procedure, Step 2 ensures \(\log (v_{ij}^{k+})-\log (v_{ij}^{k-})=L\), which is a stronger condition than \(\mathrm{UI}(\widetilde{V^{(k)}})=L\) (\(k=1,2,\ldots ,m\)). Step 4 ensures that the ratio of the acceptably consistent interval pairwise comparison matrices among \(\{\widetilde{V^{(1)}},\ldots ,\widetilde{V^{(m)}}\}\) is approximately \(\alpha \). We argue that this ratio is small, so we suggest setting \(\alpha =0.05\) according to the principle of small-probability events.

When setting \(\alpha =0.05, m=5{,}000\), different matrix size \(n\) and different \(L\), we run this procedure to obtain the values of \(\overline{\mathrm{ICI}(L)}\), which are shown in Table 1.

We conclude that the interval pairwise comparison matrix \(\widetilde{V}\) is of acceptable consistency, when \(\mathrm{ICI}(\widetilde{V})\le \overline{\mathrm{ICI}(\mathrm{UI}(\widetilde{V}))}\). Otherwise, we conclude that \(\widetilde{V}\) is of unacceptable consistency. For example, if the matrix size of \(\widetilde{V}\) is 4 and \(UI(\widetilde{V})=0.2\), then \(\widetilde{V}\) is of acceptable consistency when \(\mathrm{ICI}(\widetilde{V})\le \overline{\mathrm{ICI}(0.2)}=0.1887\). Meanwhile, for explanatory convenience, \(\overline{\mathrm{ICI}(0)}\) is denoted by \(\overline{\mathrm{CI}}\) in this paper.

When using the ICI thresholds, the decision maker first sets a \(L\) value, and then the ICI threshold is determined by \(\overline{\mathrm{ICL}(L)}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Chen, X., Li, CC. et al. Consistency issues of interval pairwise comparison matrices. Soft Comput 19, 2321–2335 (2015). https://doi.org/10.1007/s00500-014-1426-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-014-1426-2

Keywords

Navigation