Skip to main content
Log in

Quintuple Implication Principle on interval-valued intuitionistic fuzzy sets

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This paper mainly aims to introduce Quintuple Implication Principle (QIP) on interval-valued intuitionistic fuzzy sets (IVIFSs). Firstly, some algebraic properties of a class of interval-valued intuitionistic triangular norms are discussed in detail. In particular, a unified expression of residual interval-valued intuitionistic fuzzy implications generated by left-continuous triangular norms is presented. Secondly, Triple Implication Principles (TIPs) of both interval-valued intuitionistic fuzzy modus ponens (IVIFMP) and fuzzy modus tollens (IVIFMT) based on residual interval-valued intuitionistic fuzzy implications are analyzed. It is shown that the TIP solution of IVIFMP is recoverable, and the TIP solution of IVIFMT is only weakly local recoverable. Moreover, it sees by an illustrated example that the TIP method sometimes makes the computed solutions for IVIFMP and IVIFMT meaningless or misleading. To avoid the above shortcoming and enhance the recovery property of TIP solution of IVIFMT, QIP and \(\alpha \)-QIP for IVIFMP and IVIFMT are investigated and the corresponding expressions of solutions of them are also given, respectively. In addition, the QIP methods for IVIFMP and IVIFMT are recoverable and sound. Finally, QIP solutions of IVIFMP for multiple fuzzy rules are provided. An application example for medical diagnosis is given to illustrate the feasibility and effectiveness of the QIP of IVIFMP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atanassov KH (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20:87–96

    MATH  Google Scholar 

  • Atanassov KH (1994) Operators over interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst 64(2):159–174

    MathSciNet  MATH  Google Scholar 

  • Atanassov KH, Gargov G (1989) Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst 31(3):343–349

    MathSciNet  MATH  Google Scholar 

  • Chai JY, Liu JNK, Xu ZS (2013) A rule-based group decision model for warehouse evaluation under interval-valued Intuitionistic fuzzy environments. Expert Syst Appl 40:1959–1970

    Google Scholar 

  • Chen SM, Chang CH (2015) A novel similarity measure between Atanassov’s intuitionistic fuzzy sets based on transformation techniques with applications to pattern recognition. Inf Sci 291:96–114

    Google Scholar 

  • Chen F, Xu W, Bai C et al (2016) A novel approach to guarantee good robustness of fuzzy reasoning. Appl Soft Comput 41(C):224–234

    Google Scholar 

  • Cigdem K, Umut A, Seyda S, Umut A (2019) A new rule-based integrated decision making approach to container transshipment terminal selection. Marit Policy Manag 46(2):237–256

    Google Scholar 

  • Cornelis C, Deschrijver G, Kerre EE (2004) Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application. Int J Approx Reason 35(1):55–95

    MathSciNet  MATH  Google Scholar 

  • De SK, Biswas R, Roy AR (2001) An application of intuitionistic fuzzy sets in medical diagnosis. Fuzzy Sets Syst 117(2):209–213

    MATH  Google Scholar 

  • Deschrijver G, Cornelis C, Kerre EE (2003) Class of intuitionistic fuzzy t-norms satisfying the residuation principle. Int J Uncertain Knowl Based Syst 11(6):691–709

    MATH  Google Scholar 

  • Deschrijver G, Cornelis C, Kerre EE (2004) On the representation of intuitionistic fuzzy t-norms and t-conorms. IEEE Trans Fuzzy Syst 12(1):45–61

    MATH  Google Scholar 

  • Dong YC, Liu YT, Liang HM, Chiclana F, Herrera-Viedma E (2018a) Strategic weight manipulation in multiple attribute decision making. Omega 75:154–164

    Google Scholar 

  • Dong YC, Zhao SH, Zhang HJ, Chiclana F, Herrera-Viedma E (2018b) A self-management mechanism for non-cooperative behaviors in large-scale group consensus reaching processes. IEEE Trans Fuzzy Syst 26:3276–3288

    Google Scholar 

  • Dubois D, Prade H (2012) Gradualness, uncertainty and bipolarity: making sense of fuzzy sets. Fuzzy Sets Syst 192(3):3–24

    MathSciNet  MATH  Google Scholar 

  • Filho FGDA, Maitelli AL (2017) A neuro-fuzzy control scheme for the electrical submersible pumping in oilfield systems. IEEE Latin Am Trans 15(11):2077–2083

    Google Scholar 

  • Franco C, Montero J, Rodriguez JT (2013) A fuzzy and bipolar approach to preference modeling with application to need and desire. Fuzzy Sets Syst 214(1):20–34

    MathSciNet  Google Scholar 

  • Gottwald S (2000) Generalized solvability behaviour for systems of fuzzy equations. Discovering the world with fuzzy logic. Physica-Verlag Gmb H, Heidelberg, pp 401–430

    MATH  Google Scholar 

  • Gupta P, Tiwari P (2016) Measures of cosine similarity intended for fuzzy sets, intuitionistic and interval-valued intuitionistic fuzzy sets with application in medical diagnoses. In: International conference on computing for sustainable global development. IEEE

  • Iancu I (2012) A Mamdani type fuzzy logic controller, fuzzy logic-controls, concepts, theories and applications. InTech

  • Jenei S (1997) A more efficient method for defining fuzzy connectives. Fuzzy Sets Syst 90(1):25–35

    MathSciNet  MATH  Google Scholar 

  • Klement EP, Mesiar R, Pap E (2000) Triangular norms. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  • Lee CC (1990) Fuzzy logic in control systems: fuzzy logic controller. IEEE Trans Syst Man Cybern Syst 20(2):405–435

    MathSciNet  Google Scholar 

  • Li DC, Li YM (2011) Robustness of interval-valued fuzzy inference. Inf Sci 181(20):4754–4764

    MathSciNet  MATH  Google Scholar 

  • Li DC, Qin SJ (2018a) Performance analysis of fuzzy systems based on quintuple implications method. Int J Approx Reason 96:20–35

    MathSciNet  MATH  Google Scholar 

  • Li DC, Qin SJ (2018b) The quintuple implication principle of fuzzy reasoning based on interval-valued S-implication. J Log Algebraic Methods Program 100:185–194

    MathSciNet  MATH  Google Scholar 

  • Li DC, Zhu M (2019) Interval-valued fuzzy inference based on aggregation functions. Int J Approx Reason 113:74–90

    MathSciNet  MATH  Google Scholar 

  • Liu HW, Wang GJ (2006) A note on the unified forms of triple I method. Comput Math Appl 52(10):1609–1613

    MathSciNet  MATH  Google Scholar 

  • Liu HW, Wang GJ (2007) Unified forms of fully implicational restriction methods for fuzzy reasoning. Inf Sci 177(3):956–966

    MathSciNet  MATH  Google Scholar 

  • Liu HW, Wang GJ (2008) Triple I method based on pointwise sustaining degrees. Comput Math Appl 55(11):2680–2688

    MathSciNet  MATH  Google Scholar 

  • Liu Y, Zheng MC (2014) The dual triple I methods of FMT and IFMT. Math Probl Eng 2014(3):1–8

    MathSciNet  MATH  Google Scholar 

  • Liu YT, Dong YC, Liang HM, Chiclana F, Herrera-Viedma E (2018) Multiple attribute strategic weight manipulation with minimum cost in a group decision making context with interval attribute weights information. IEEE Trans Syst Man Cybern Syst 1–12

  • Liu HC, You JX, Duan CY (2019) An integrated approach for failure mode and effect analysis under interval-valued intuitionistic fuzzy environment. Int J Prod Econ 207:163–172

    Google Scholar 

  • López V, Río SD, Benítez JM, Herrera F (2015) Cost-sensitive linguistic fuzzy rule based classification systems under the MapReduce framework for imbalanced big data. Fuzzy Sets Syst 258:5–38

    MathSciNet  Google Scholar 

  • Luo MX, Yao N (2013) Triple I algorithms based on Schweizer–Sklar operators in fuzzy reasoning. Int J Approx Reason 54(5):640–652

    MathSciNet  MATH  Google Scholar 

  • Luo MX, Zhang K (2015) Robustness of full implication algorithms based on interval-valued fuzzy inference. Int J Approx Reason 62:61–72

    MathSciNet  MATH  Google Scholar 

  • Luo MX, Zhou XL (2015) Robustness of reverse triple I algorithms based on interval-valued fuzzy inference. Int J Approx Reason 66:16–26

    MathSciNet  MATH  Google Scholar 

  • Luo MX, Zhou XL (2017) Interval-valued quintuple implication principle of fuzzy reasoning. Int J Approx Reason 84:23–32

    MathSciNet  MATH  Google Scholar 

  • Luo MX, Zhou KY (2018) Logical foundation of the quintuple implication inference methods. Int J Approx Reason 101:1–9

    MathSciNet  MATH  Google Scholar 

  • Mamdani EH, Gaines BR (1981) Fuzzy Reason Appl. Academic Press, London

    Google Scholar 

  • Meng FY, Chen XH (2016) Entropy and similarity measure for Atannasov’s interval-valued intuitionistic fuzzy sets and their application. Fuzzy Optim Decis Mak 15(1):75–101

    MathSciNet  MATH  Google Scholar 

  • Negnevitsky M (2005) Artificial intelligence: a guide to intelligent systems, Second edn. Person Education Limited, London

    Google Scholar 

  • Pei DW (2004) On the strict logic foundation of fuzzy reasoning. Soft Comput 8(8):539–545

    MATH  Google Scholar 

  • Pei DW (2008) Unified full implication algorithms of fuzzy reasoning. Inf Sci 178(2):520–530

    MathSciNet  MATH  Google Scholar 

  • Pei DW (2012) Formalization of implication based fuzzy reasoning method. Int J Approx Reason 53(5):837–846

    MathSciNet  MATH  Google Scholar 

  • Ray KS (2014) Soft computing and its applications, volume two: fuzzy reasoning and fuzzy control. Apple Acad Press 8(4):239–246

    Google Scholar 

  • Reiser RHS, Bedregal B (2013) Interval-valued intuitionistic fuzzy implications—construction, properties and representability. Inf Sci 248(6):68–88

    MathSciNet  MATH  Google Scholar 

  • Sanz JA, Fernández A, Bustince H, Herrera F (2010) Improving the performance of fuzzy rule-based classification systems with interval-valued fuzzy sets and genetic amplitude tuning. Inf Sci 180:3674–3685

    Google Scholar 

  • Song SJ, Wu C (2002) Reverse triple I method of fuzzy reasoning. Sci China Ser F 45(5):344–364

    MathSciNet  MATH  Google Scholar 

  • Srishti V, Seba S (2019) Fuzzy rule based unsupervised sentiment analysis from social media posts. Expert Syst Appl 138:112834

    Google Scholar 

  • Tamir DE, Rishe ND, Kandel A (eds) (2015) Fifty years of fuzzy logic and its applications. Springer, Basel

    MATH  Google Scholar 

  • Tang YM, Pedrycz W (2018) On the \(\alpha (u, v)\)-symmetric implicational method for R- and (S, N)-implications. Int J Approx Reason 92:212–231

    MathSciNet  MATH  Google Scholar 

  • Tang YM, Yang XZ (2013) Symmetric implicational method of fuzzy reasoning. Int J Approx Reason 54(8):1034–1048

    MathSciNet  MATH  Google Scholar 

  • Vo TP (2016) Optimizing the CRI method by improving the implication step in MISO fuzzy expert systems. In: AETA 2015: recent advances in electrical engineering and related sciences. Springer

  • Wang LX (1997) A course in fuzzy systems and control. Prentice Hall PTR, Upper Saddle River

    MATH  Google Scholar 

  • Wang GJ (1999a) Full implicational triple I method for fuzzy reasoning. Sci China Ser E 29(1):43–53

    Google Scholar 

  • Wang GJ (1999b) On the logic foundation of fuzzy reasoning. Inf Sci 117(1–2):47–88

    MathSciNet  MATH  Google Scholar 

  • Wang GJ (2004) Formalized theory of general fuzzy reasoning. Inf Sci 160(1):251–266

    MathSciNet  MATH  Google Scholar 

  • Wang GJ (2008) Non-classical mathematical logic and approximate reasoning, 2nd edn. Science Press, Beijing

    Google Scholar 

  • Wang CY, Chen SM (2018) A new multiple attribute decision making method based on linear programming methodology and novel score function and novel accuracy function of interval-valued intuitionistic fuzzy values. Inf Sci 438:145–155

    MathSciNet  Google Scholar 

  • Wang GJ, Fu L (2005) Unified forms of triple I method. Comput Math Appl 49(5–6):923–932

    MathSciNet  MATH  Google Scholar 

  • Xu ZS (2007) Methods for aggregating interval-valued intuitionistic fuzzy information and their application to decision making. Control Decis 22(2):215–219 (in chinese)

    MathSciNet  Google Scholar 

  • Yang ZL, Bonsall S, Wang J (2008) Fuzzy rule-based Bayesian reasoning approach for prioritization of failures in FMEA. IEEE Trans Reliab 57(3):517–528

    Google Scholar 

  • Yen J, Langari R, Zadeh LA (1995) Industrial applications of fuzzy logic and intelligent systems. IEEE Press, Piscataway

    MATH  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    MATH  Google Scholar 

  • Zadeh LA (1973) Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans Syst Man Cybern Syst 3(1):28–44

    MathSciNet  MATH  Google Scholar 

  • Zheng MC, Liu Y (2019) Multiple-rules reasoning based on Triple I method on Atanassov’s intuitionistic fuzzy sets. Int J Approx Reason 113:196–206

    MathSciNet  MATH  Google Scholar 

  • Zheng MC, Wang GJ (2005) Co-residuated lattice with application. Fuzzy Syst Math 19(4):1–6 (in Chinese)

    MathSciNet  Google Scholar 

  • Zheng MC, Shi ZK, Liu Y (2014) Triple I method of approximate reasoning on Atanassov’s intuitionistic fuzzy sets. Int J Approx Reason 55(6):1369–1382

    MathSciNet  MATH  Google Scholar 

  • Zhou BK, Xu GQ, Li SJ (2015) The quintuple implication principle of fuzzy reasoning. Inf Sci 297:202–215

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their careful reading of this paper and for the valuable comments and suggestions which improved the quality of this paper. This work is supported by National Natural Science Foundation of China (Grant No. 11401495), Fund of China Scholarship Council (No. 201708515152) and Graduate Educational Reform Project of Southwest Petroleum University (No.18YJZD08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Jin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

The proof of Proposition 7 is shown as follows:

  1. (1)

    Since \((\otimes _{SL^*},\rightarrow _{SL^*})\) is an interval-valued intuitionistic adjoint pair, then \(\gamma \rightarrow _{SL^*} \eta =\mathbf{1 }^*\) if and only if \(\mathbf{1 }^*\otimes _{SL^*}\gamma \le \eta \) if and only if \(\gamma \le \eta \).

  2. (2)

    \(\eta \le \gamma \rightarrow _{SL^*}\beta \) if and only if \(\eta \otimes _{SL^*}\gamma \le \beta \) if and only if \(\gamma \otimes _{SL^*}\eta \le \beta \) if and only if \(\gamma \le \eta \rightarrow _{SL^*} \beta \).

  3. (3)

    \(\forall \alpha \in SL^*\), \(\alpha \le \gamma \rightarrow _{SL^*}(\eta \rightarrow _{SL^*}\beta )\) if and only if \(\alpha \otimes _{SL^*}\gamma \le \eta \rightarrow _{SL^*}\beta \) if and only if \(\alpha \otimes _{SL^*}\gamma \otimes _{SL^*}\eta \le \beta \) if and only if \(\alpha \otimes _{SL^*}\eta \le \gamma \rightarrow _{SL^*}\beta \) if and only if \(\alpha \le \eta \rightarrow _{SL^*} (\gamma \rightarrow _{SL^*}\beta )\), that is, \(\gamma \rightarrow _{SL^*}(\eta \rightarrow _{SL^*}\beta )=\eta \rightarrow _{SL^*}(\gamma \rightarrow _{SL^*}\beta )\).

  4. (4)

    \(\mathbf{1 }^*\rightarrow _{SL^*}\eta =\vee \{\gamma \in SL^*|\gamma \otimes _{SL^*}\mathbf{1 }^*\le \eta \}=\eta \).

  5. (5)

    \(\forall \alpha \in SL^*\), \(\alpha \le \gamma \rightarrow _{SL^*}(\wedge _{i\in I}\beta _i)\) if and only if \(\alpha \otimes _{SL^*}\gamma \le \wedge _{i\in I}\beta _i\) if and only if \(\forall i\in I\), \(\alpha \otimes _{SL^*}\gamma \le \beta _i\) if and only if \(\forall i\in I\), \(\alpha \le \gamma \rightarrow _{SL^*}\beta _i\) if and only if \(\alpha \le \wedge _{i\in I}(\gamma \rightarrow _{SL^*}\beta _i)\), that is, \(\gamma \rightarrow _{SL^*}(\wedge _{i\in I}\beta _i)=\wedge _{i\in I}(\gamma \rightarrow _{SL^*}\beta _i)\).

  6. (6)

    Since \(\otimes _{SL^*}\) is left continuous, then \(\forall \alpha \in SL^*\), \(\alpha \le (\vee _{i\in I}\gamma _i)\rightarrow _{SL^*} \beta \) if and only if \(\alpha \otimes _{SL^*}(\vee _{i\in I}\gamma _i)\le \beta \) if and only if \(\vee _{i\in I}(\alpha \otimes _{SL^*}\gamma _i)\le \beta \) if and only if \(\forall i\in I\),\(\alpha \otimes _{SL^*}\gamma _i\le \beta \) if and only if \(\forall i\in I\),\(\alpha \le \gamma _i \rightarrow _{SL^*}\beta \) if and only if \(\alpha \le \wedge _{i\in I}(\gamma _i\rightarrow _{SL^*}\beta )\), that is, \((\vee _{i\in I}\gamma _i)\rightarrow _{SL^*} \beta =\wedge _{i\in I}(\gamma _i\rightarrow _{SL^*}\beta )\).

  7. (7)

    Let \(\forall \alpha _1, \alpha _2\in SL^*\) and \(\alpha _1\le \alpha _2\), then \(\alpha _1\wedge \alpha _2=\alpha _1\), it follows from Proposition 7 (5) that \(\beta \rightarrow _{SL^*}\alpha _1=\beta \rightarrow _{SL^*}(\alpha _1\wedge \alpha _2)=(\beta \rightarrow _{SL^*}\alpha _1)\wedge (\beta \rightarrow _{SL^*}\alpha _2)\le \beta \rightarrow _{SL^*}\alpha _2\), that is, \(\rightarrow _{SL^*}\) is isotone in the second variable. Similarly, it follows from Proposition 7 (6) that \(\rightarrow _{SL^*}\) is antitone in the first variable.

Appendix 2

The proof of Theorem 2 is shown as follows:

Let \(\gamma =([a,b],[c,d])=\alpha \rightarrow _{SL^*}\beta \),

\(\eta _i=([e_i,f_i],[h_i,k_i])\in SL^*\). From Theorem 1, it follows that

$$\begin{aligned}&\eta =([a,b],[c,d])=\alpha \rightarrow _{SL^*}\beta \\&\quad =\bigvee \{\eta _i\in SL^*\mid \eta _i\otimes _{SL^*} \alpha \le \beta \}\\&\quad =\bigvee \{([e_i,f_i],[h_i,k_i])\mid e_i\otimes a_1\le a_2,\\&\qquad f_i\otimes b_1\le b_2, c_2\le h_i\oplus c_1, d_2\le k_i\oplus d_1, \\&\qquad f_i+h_i\le 1, f_i+k_i\le 1\}\\&\quad =(\vee [e_i,f_i],\wedge [h_i,k_i]). \end{aligned}$$

We firstly compute the second element [cd] of \(\gamma \), it could be given by the following form:

\([c,d]=\bigwedge \{[h_i,k_i]\mid c_2\le h_i\oplus c_1, d_2\le k_i\oplus d_1\}=\bigwedge \{[h_i,k_i]\mid [c_2,d_2]\le [h_i,k_i]\oplus _{SI}[c_1,d_1] \}=[c_2\ominus c_1,(c_2\ominus c_1)\vee (d_2\ominus d_1)]\).

In fact, suppose that \(M=\{[h_i,k_i]\mid c_2\le h_i\oplus c_1, d_2\le k_i\oplus d_1\}\), if \(\forall [h_i,k_i]\in M\), then \(c_2\le h_i\oplus c_1\) and \(d_2\le k_i\oplus d_1\), therefore \(c_2\ominus c_1\le h_i\le k_i\) and \(d_2\ominus d_1\le k_i\), hence \([c_2\ominus c_1,(c_2\ominus c_1)\vee (d_2\ominus d_1)]\le [h_i,k_i]\).

Therefore,

figure a

Secondly,

\([c_2\ominus c_1,(c_2\ominus c_1)\vee (d_2\ominus d_1)]\oplus _{SI} [c_1,d_1] =[(c_2\ominus c_1)\oplus c_1,((c_2\ominus c_1)\vee (d_2\ominus d_1))\oplus d_1] \ge [(c_2\ominus c_1)\oplus c_1,(d_2\ominus d_1)\oplus d_1]\ge [c_2,d_2]\), then

figure b

Finally, from (I) and (II),

figure c

For the first argument [ab] of \(\gamma \), \([a,b]=\bigvee \{[e_i,f_i]\mid e_i\otimes a_1\le a_2, f_i\otimes b_1\le b_2, c_2\le h_i\oplus c_1, d_2\le k_i\oplus d_1, f_i\le 1-h_i, f_i\le 1-k_i\}\), so we can obtain that

figure d

Similarly, we have

figure e

From (III), (IV) and (V), it follows that

figure f

Moreover,

$$\begin{aligned}&([(a_1\rightarrow a_2)\wedge (b_1\rightarrow b_2)\wedge (1-c_2\ominus c_1)\\&\qquad \wedge (1-d_2\ominus d_1),(b_1\rightarrow b_2)\wedge (1-c_2\ominus c_1)\\&\qquad \wedge (1-d_2\ominus d_1)],[c_2\ominus c_1,(c_2\ominus c_1)\\&\qquad \vee (d_2\ominus d_1)])\otimes _{SL^*}\alpha \\&\quad =([(a_1\rightarrow a_2)\wedge (b_1\rightarrow b_2)\wedge (1-c_2\ominus c_1)\\&\qquad \wedge (1-d_2\ominus d_1),(b_1\rightarrow b_2)\wedge (1-c_2\ominus c_1)\\&\qquad \wedge (1-d_2\ominus d_1)],[c_2\ominus c_1,(c_2\ominus c_1)\\&\qquad \vee (d_2\ominus d_1)])\otimes _{SL^*}([a_1,b_1],[c_1,d_1])\\&\quad =([((a_1\rightarrow a_2)\wedge (b_1\rightarrow b_2)\wedge (1-c_2\ominus c_1)\\&\qquad \wedge (1-d_2\ominus d_1))\otimes a_1,((b_1\rightarrow b_2)\wedge (1-c_2\ominus c_1)\\&\qquad \wedge (1-d_2\ominus d_1))\otimes b_1],[(c_2\ominus c_1)\oplus c_1,((c_2\ominus c_1)\\&\qquad \vee (d_2\ominus d_1))\oplus d_1])\\&\quad \le ([(a_1\rightarrow a_2)\otimes a_1,(b_1\rightarrow b_2)\otimes b_1], \\&\qquad [(c_2\ominus c_1)\oplus c_1,(d_2\ominus d_1)\oplus d_1])\\&\quad \le ([a_2,b_2],[c_2,d_2])\\&\quad =\beta . \end{aligned}$$

From Eq. (8),

figure g

Hence, this completes the proof from (VI) and (VII).

Appendix 3

Example 6

Let \(\otimes =\otimes _G\). Then,

$$\begin{aligned} a_1\rightarrow _G a_2= & {} \left\{ \begin{array}{ll} 1, &{} a_1\le a_2;\\ a_2, &{} a_1>a_2.\\ \end{array} \right. \\ b_1\rightarrow _G b_2= & {} \left\{ \begin{array}{ll} 1, &{} b_1\le b_2;\\ b_2, &{} b_1>b_2.\\ \end{array} \right. \\ c_2\ominus _G c_1= & {} \left\{ \begin{array}{ll} 0, &{} c_2\le c_1;\\ c_2, &{} c_2>c_1.\\ \end{array} \right. \\ 1-c_2\ominus _G c_1= & {} \left\{ \begin{array}{ll} 1, &{} c_2\le c_1;\\ 1-c_2, &{} c_2>c_1.\\ \end{array} \right. \\ d_2\ominus _G d_1= & {} \left\{ \begin{array}{ll} 0, &{} d_2\le d_1;\\ d_2, &{} d_2>d_1.\\ \end{array} \right. \\ 1-d_2\ominus _G d_1= & {} \left\{ \begin{array}{ll} 1, &{} d_2\le d_1;\\ 1-d_2, &{} d_2>d_1.\\ \end{array} \right. \end{aligned}$$

Therefore, the result of implication \(\alpha \rightarrow _{SL^*}\beta \) could be computed and obtained as follows:

If \(a_1\le a_2, b_1\le b_2, c_2\le c_1, d_2\le d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([1,1],[0,0])\);

If \(a_1\le a_2, b_1\le b_2, c_2\le c_1, d_2> d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([1-d_2,1-d_2],[0,d_2])\);

If \(a_1\le a_2, b_1\le b_2, c_2> c_1, d_2\le d_1\), \(\alpha \rightarrow _{SL^*}\beta =([1-c_2,1-c_2],[c_2,c_2])\);

If \(a_1\le a_2, b_1\le b_2, c_2> c_1, d_2> d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([1-d_2,1-d_2],[c_2,d_2])\);

If \(a_1\le a_2, b_1> b_2, c_2\le c_1, d_2\le d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([b_2,b_2],[0,0])\);

If \(a_1\le a_2, b_1> b_2, c_2\le c_1, d_2> d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([b_2,b_2],[0,d_2])\);

If \(a_1\le a_2, b_1> b_2, c_2> c_1, d_2\le d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([b_2,b_2],[c_2,c_2])\);

If \(a_1\le a_2, b_1> b_2, c_2> c_1, d_2> d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([b_2,b_2],[c_2,d_2])\) ;

If \(a_1> a_2, b_1\le b_2, c_2\le c_1, d_2\le d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([a_2,1],[0,0])\);

If \(a_1> a_2, b_1\le b_2, c_2\le c_1, d_2> d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([a_2,1-d_2],[0,d_2])\);

If \(a_1> a_2, b_1\le b_2, c_2> c_1, d_2\le d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([a_2,1-c_2],[c_2,c_2])\);

If \(a_1> a_2, b_1\le b_2, c_2> c_1, d_2> d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([a_2,1-d_2],[c_2,d_2])\);

If \(a_1> a_2, b_1> b_2, c_2\le c_1, d_2\le d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([a_2,b_2],[0,0])\);

If \(a_1> a_2, b_1> b_2, c_2\le c_1, d_2> d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([a_2,b_2],[0,d_2])\);

If \(a_1> a_2, b_1> b_2, c_2> c_1, d_2\le d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([a_2,b_2],[c_2,c_2])\);

If \(a_1> a_2, b_1> b_2, c_2> c_1, d_2> d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([a_2,b_2],[c_2,d_2])\).

Example 7

Let \(\otimes =\otimes _{Lu}\). Then,

$$\begin{aligned}&a_1\rightarrow _{Lu} a_2=(1-a_1+a_2)\wedge 1, \\&b_1\rightarrow _{Lu} b_2=(1-b_1+b_2)\wedge 1;\\&c_2\ominus _{Lu} c_1=(c_2-c_1)\vee 0, \\&1-c_2\ominus _{Lu} c_1=(1-c_2+c_1)\wedge 1;\\&d_2\ominus _{Lu} d_1=(d_2-d_1)\vee 0, \\&1-d_2\ominus _{Lu} d_1=(1-d_2+d_1)\wedge 1; \end{aligned}$$

Thus, \(a=(1-a_1+a_2)\wedge (1-b_1+b_2)\wedge (1-c_2+c_1)\wedge (1-d_2+d_1)\wedge 1\),

$$\begin{aligned}&b=(1-b_1+b_2)\wedge (1-c_2+c_1)\wedge (1-d_2+d_1)\wedge 1,\\&c=(c_2-c_1)\vee 0,\\&d=(c_2-c_1)\vee (d_2-d_1)\vee 0. \end{aligned}$$

Therefore,

$$\begin{aligned}&\alpha \rightarrow _{SL^*}\beta =([(1-a_1+a_2)\wedge (1-b_1+b_2)\\&\quad \wedge (1-c_2+c_1)\wedge (1-d_2+d_1)\wedge 1,(1-b_1+b_2)\\&\quad \wedge (1-c_2+c_1)\wedge (1-d_2+d_1)\wedge 1],[(c_2-c_1)\\&\quad \vee 0,(c_2-c_1)\vee (d_2-d_1)\vee 0]). \end{aligned}$$

Example 8

Let \(\otimes =\otimes _\pi \). Then,

$$\begin{aligned} a_1\rightarrow _\pi a_2= & {} \left\{ \begin{array}{ll} 1, &{} a_1\le a_2;\\ \frac{a_2}{a_1}, &{} a_1>a_2.\\ \end{array} \right. \\ b_1\rightarrow _\pi b_2= & {} \left\{ \begin{array}{ll} 1, &{} b_1\le b_2;\\ \frac{b_2}{b_1}, &{} b_1>b_2.\\ \end{array} \right. \\ c_2\ominus _\pi c_1= & {} \left\{ \begin{array}{ll} 0, &{} c_2\le c_1;\\ \frac{c_2-c_1}{1-c_1}, &{} c_2>c_1.\\ \end{array} \right. \\ 1-c_2\ominus _\pi c_1= & {} \left\{ \begin{array}{ll} 1, &{} c_2\le c_1;\\ \frac{1-c_2}{1-c_1}, &{} c_2>c_1.\\ \end{array} \right. \\ d_2\ominus _\pi d_1= & {} \left\{ \begin{array}{ll} 0, &{} d_2\le d_1;\\ \frac{d_2-d_1}{1-d_1}, &{} d_2>d_1.\\ \end{array} \right. \\ 1-d_2\ominus _\pi d_1= & {} \left\{ \begin{array}{ll} 1, &{} d_2\le d_1;\\ \frac{1-d_2}{1-d_1}, &{} d_2>d_1.\\ \end{array} \right. \end{aligned}$$

Therefore, the result of implication \(\alpha \rightarrow _{SL^*}\beta \) could be computed and obtained as follows:

If \(a_1\le a_2, b_1\le b_2, c_2\le c_1, d_2\le d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([1,1],[0,0])\);

\(If a_1\le a_2, b_1\le b_2, c_2\le c_1, d_2> d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([\frac{1-d_2}{1-d_1}, \frac{1-d_2}{1-d_1}],[0,\frac{d_2-d_1}{1-d_1}])\);

If \(a_1\le a_2, b_1\le b_2, c_2> c_1, d_2\le d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([\frac{1-c_2}{1-c_1}, \frac{1-c_2}{1-c_1}],[\frac{c_2-c_1}{c_2-c_1},\frac{c_2-c_1}{c_2-c_1}])\);

If \(a_1\le a_2, b_1\le b_2, c_2> c_1, d_2> d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([\frac{1-c_2}{1-c_1} \wedge \frac{1-d_2}{1-d_1},\frac{1-c_2}{1-c_1}\wedge \frac{1-d_2}{1-d_1}], [\frac{c_2-c_1}{c_2-c_1},\frac{c_2-c_1}{c_2-c_1} \vee \frac{d_2-d_1}{1-d_1}])\);

If \(a_1\le a_2, b_1> b_2, c_2\le c_1, d_2\le d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([\frac{b_2}{b_1},\frac{b_2}{b_1}],[0,0])\);

If \(a_1\le a_2, b_1> b_2, c_2\le c_1, d_2> d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([\frac{b_2}{b_1}\wedge \frac{1-d_2}{1-d_1},\frac{b_2}{b_1}\wedge \frac{1-d_2}{1-d_1}],[0,\frac{d_2-d_1}{1-d_1}])\);

If \(a_1\le a_2, b_1> b_2, c_2> c_1, d_2\le d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([\frac{b_2}{b_1}\wedge \frac{1-c_2}{1-c_1},\frac{b_2}{b_1}\wedge \frac{1-c_2}{1-c_1}], {[\frac{c_2-c_1}{1-c_1},\frac{c_2-c_1}{1-c_1}]})\);

If \(a_1\le a_2, b_1> b_2, c_2> c_1, d_2> d_1\), \(\alpha \rightarrow _{SL^*}\beta =([\frac{b_2}{b_1}\wedge \frac{1-c_2}{1-c_1}\wedge \frac{1-d_2}{1-d_1},\frac{b_2}{b_1} \wedge \frac{1-c_2}{1-c_1} \wedge \frac{1-d_2}{1-d_1}],[\frac{c_2-c_1}{1-c_1}, \frac{c_2-c_1}{1-c_1}\vee \frac{d_2-d_1}{1-d_1}])\);

If \(a_1> a_2, b_1\le b_2, c_2\le c_1, d_2\le d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([\frac{a_2}{a_1},1],[0,0])\);

If \(a_1> a_2, b_1\le b_2, c_2\le c_1, d_2> d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([\frac{a_2}{a_1}\wedge \frac{1-d_2}{1-d_1},\frac{1-d_2}{1-d_1}], {[0,\frac{d_2-d_1}{1-d_1}]})\);

If \(a_1> a_2, b_1\le b_2, c_2> c_1, d_2\le d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([\frac{a_2}{a_1}\wedge \frac{1-c_2}{1-c_1},\frac{1-c_2}{1-c_1}],[\frac{c_2-c_1}{1-c_1}, \frac{c_2-c_1}{1-c_1}])\);

If \(a_1> a_2, b_1\le b_2, c_2> c_1, d_2> d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([\frac{a_2}{a_1}\wedge \frac{1-c_2}{1-c_1}\wedge \frac{1-d_2}{1-d_1},\frac{1-c_2}{1-c_1} \wedge \frac{1-d_2}{1-d_1}], [\frac{c_2-c_1}{1-c_1},\frac{c_2-c_1}{1-c_1}\vee \frac{d_2-d_1}{1-d_1}])\);

If \(a_1> a_2, b_1> b_2, c_2\le c_1, d_2\le d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([\frac{a_2}{a_1}\wedge \frac{b_2}{b_1},\frac{b_2}{b_1}],[0,0])\);

If \(a_1> a_2, b_1> b_2, c_2\le c_1, d_2> d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([\frac{a_2}{a_1}\wedge \frac{b_2}{b_1}\wedge \frac{1-d_2}{1-d_1},\frac{b_2}{b_1} \wedge \frac{1-d_2}{1-d_1}], [0,\frac{d_2-d_1}{1-d_1}])\);

If \(a_1> a_2, b_1> b_2, c_2> c_1, d_2\le d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([\frac{a_2}{a_1}\wedge \frac{b_2}{b_1}\wedge \frac{1-c_2}{1-c_1},\frac{b_2}{b_1}\wedge \frac{1-c_2}{1-c_1}], [\frac{c_2-c_1}{1-c_1},\frac{c_2-c_1}{1-c_1}])\);

If \(a_1> a_2, b_1> b_2, c_2> c_1, d_2> d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([\frac{a_2}{a_1}\wedge \frac{b_2}{b_1}\wedge \frac{1-c_2}{1-c_1}\wedge \frac{1-d_2}{1-d_1},\frac{b_2}{b_1}\wedge \frac{1-c_2}{1-c_1} \wedge \frac{1-d_2}{1-d_1}],[\frac{c_2-c_1}{1-c_1}, \frac{c_2-c_1}{1-c_1}\vee \frac{d_2-d_1}{1-d_1}])\).

Example 9

Let \(\otimes =\otimes _0\). Then,

$$\begin{aligned} a_1\rightarrow _0 a_2= & {} \left\{ \begin{array}{ll} 1, &{} a_1\le a_2;\\ (1-a_1)\vee a_2, &{} a_1>a_2.\\ \end{array} \right. \\ b_1\rightarrow _0 b_2= & {} \left\{ \begin{array}{ll} 1, &{} b_1\le b_2;\\ (1-b_1)\vee b_2, &{} b_1>b_2.\\ \end{array} \right. \\ c_2\ominus _0 c_1= & {} \left\{ \begin{array}{ll} 0, &{} c_2\le c_1;\\ c_2\wedge (1-c_1), &{} c_2>c_1.\\ \end{array} \right. \\ 1-c_2\ominus _0 c_1= & {} \left\{ \begin{array}{ll} 1, &{} c_2\le c_1;\\ c_1\vee (1-c_2), &{} c_2>c_1.\\ \end{array} \right. \\ d_2\ominus _0 d_1= & {} \left\{ \begin{array}{ll} 0, &{} d_2\le d_1;\\ d_2\wedge (1-d_1), &{} d_2>d_1.\\ \end{array} \right. \\ 1-d_2\ominus _0 d_1= & {} \left\{ \begin{array}{ll} 1, &{} d_2\le d_1;\\ d_1\vee (1-d_2), &{} d_2>d_1.\\ \end{array} \right. \end{aligned}$$

Therefore, the result of implication \(\alpha \rightarrow _{SL^*}\beta \) could be computed and obtained as follows:

If \(a_1\le a_2, b_1\le b_2, c_2\le c_1, d_2\le d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([1,1],[0,0])\);

If \(a_1\le a_2, b_1\le b_2, c_2\le c_1, d_2> d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([d_1\vee (1-d_2),d_1 \vee (1-d_2)],[0,d_2\wedge (1-d_1)])\);

If \(a_1\le a_2, b_1\le b_2, c_2> c_1, d_2\le d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([(c_1\vee (1-c_2)),(c_1\vee (1-c_2))], [c_2\wedge (1-c_1),c_2\wedge (1-c_1)])\);

If \(a_1\le a_2, b_1\le b_2, c_2> c_1, d_2> d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([(c_1\vee (1-c_2))\wedge (d_1 \vee (1-d_2)),(c_1\vee (1-c_2))\wedge (d_1\vee (1-d_2))], [c_2\wedge (1-c_1),(c_2\wedge (1-c_1))\vee (d_2\wedge (1-d_1))])\);

If \(a_1\le a_2, b_1> b_2, c_2\le c_1, d_2\le d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([(1-b_1)\vee b_2,(1-b_1)\vee b_2],[0,0])\),

If \(a_1\le a_2, b_1> b_2, c_2\le c_1, d_2> d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([((1-b_1)\vee b_2)\wedge (d_1\vee (1-d_2)), ((1-b_1)\vee b_2)\wedge (d_1\vee (1-d_2))],[0,d_2\wedge (1-d_1)])\);

If \(a_1\le a_2, b_1> b_2, c_2> c_1, d_2\le d_1\), \(\alpha \rightarrow _{SL^*}\beta =([((1-b_1)\vee b_2)\wedge (c_1\vee (1-c_2)),((1-b_1)\vee b_2)\wedge (c_1\vee (1-c_2))],[c_2\wedge (1-c_1),c_2\wedge (1-c_1)])\);

If \(a_1\le a_2, b_1> b_2, c_2> c_1, d_2> d_1\), \(\alpha \rightarrow _{SL^*}\beta =([((1-b_1)\vee b_2)\wedge (c_1\vee (1-c_2)) \wedge (d_1\vee (1-d_2)),((1-b_1)\vee b_2)\wedge (c_1\vee (1-c_2))\wedge (d_1\vee (1-d_2))],[c_2 \wedge (1-c_1),(c_2\wedge (1-c_1)) \vee (d_2\wedge (1-d_1))])\);

If \(a_1> a_2, b_1\le b_2, c_2\le c_1, d_2\le d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([(1-a_1)\vee a_2,1],[0,0])\);

If \(a_1> a_2, b_1\le b_2, c_2\le c_1, d_2> d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([((1-a_1)\vee a_2)\wedge (d_1\vee (1-d_2)), d_1\vee (1-d_2)],[0,d_2\wedge (1-d_1)])\);

If \(a_1> a_2, b_1\le b_2, c_2> c_1, d_2\le d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([((1-a_1)\vee a_2)\wedge (c_1\vee (1-c_2)), c_1\vee (1-c_2)],[c_2\wedge (1-c_1),c_2\wedge (1-c_1)])\);

If \(a_1> a_2, b_1\le b_2, c_2> c_1, d_2> d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([((1-a_1)\vee a_2)\wedge (c_1\vee (1-c_2)) \wedge (d_1\vee (1-d_2)),(c_1\vee (1-c_2))\wedge (d_1 \vee (1-d_2))],[c_2\wedge (1-c_1), (c_2\wedge (1-c_1))\vee (d_2\wedge (1-d_1))])\);

If \(a_1> a_2, b_1> b_2, c_2\le c_1, d_2\le d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([((1-a_1)\vee a_2)\wedge ((1-b_1)\vee b_2), (1-b_1)\vee b_2],[0,0])\);

If \(a_1> a_2, b_1> b_2, c_2\le c_1, d_2> d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([((1-a_1)\vee a_2)\wedge ((1-b_1)\vee b_2) \wedge (d_1\vee (1-d_2)),((1-b_1)\vee b_2)\wedge (d_1\vee (1-d_2))],[0,d_2\wedge (1-d_1)])\);

If \(a_1> a_2, b_1> b_2, c_2> c_1, d_2\le d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([((1-a_1)\vee a_2)\wedge ((1-b_1)\vee b_2)\wedge (c_1\vee (1-c_2)),((1-b_1)\vee b_2)\wedge (c_1\vee (1-c_2))],[c_2\wedge (1-c_1),c_2\wedge (1-c_1)])\);

If \(a_1> a_2, b_1> b_2, c_2> c_1, d_2> d_1\), then \(\alpha \rightarrow _{SL^*}\beta =([((1-a_1)\vee a_2)\wedge ((1-b_1)\vee b_2) \wedge (c_1\vee (1-c_2))\wedge (d_1\vee (1-d_2)),((1-b_1)\vee b_2)\wedge (c_1\vee (1-c_2))\wedge (d_1\vee (1-d_2))], [c_2\wedge (1-c_1),(c_2\wedge (1-c_1))\vee (d_2\wedge (1-d_1))])\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, J., Ye, M. & Pedrycz, W. Quintuple Implication Principle on interval-valued intuitionistic fuzzy sets. Soft Comput 24, 12091–12109 (2020). https://doi.org/10.1007/s00500-019-04649-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-019-04649-1

Keywords

Navigation