Skip to main content
Log in

Improving the effectiveness of RBF classifier based on a hybrid cost function

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper presents a new minimum classification error (MCE)–mean square error (MSE) hybrid cost function to enhance the classification ability and speed up the learning process of radial basis function (RBF)-based classifier. Contributed by the MCE function, the proposed cost function enables the RBF-based classifier to achieve an excellent classification performance compared with the conventional MSE function. In addition, certain learning difficulties experienced by the MCE algorithm can be solved in an efficient and simple way. The presented results show that the proposed method exhibits a substantially higher convergence rate compared with the MCE function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang GP (2000) Neural networks for classification: a survey. IEEE Trans Syst Man Cybern Part C 4:451–462

    Article  Google Scholar 

  2. Girosi F, Poggio T (1990) Networks and the best approximation property. Biol Cybern 63:169–176

    Article  MATH  MathSciNet  Google Scholar 

  3. Poggio T, Girosi F (1990) Regularization algorithms for learning that are equivalent to multiplayer networks. Science 247:978–982

    Article  MathSciNet  Google Scholar 

  4. Haykin S (1999) Neural networks: a comprehensive foundation. Prentice Hall, New Jersey

    MATH  Google Scholar 

  5. Bishop C (1995) Neural networks for pattern recognition. Clarendon Press, Oxford

    Google Scholar 

  6. Howell AJ, Buxton H (1998) Learning identity with radial basis function networks. Neurocomputing 20:15–34

    Article  Google Scholar 

  7. Ceccarelli M, Hounsou JT (1996) Sequence recognition with radial basis function networks: experiments with spoken digits. Neurocomputing 11:75–88

    Article  MATH  Google Scholar 

  8. Schwenker F, Kestler HA, Palm G (2001) Three learning phases for radial-basis-function networks. Neural Netw 14:439–458

    Article  Google Scholar 

  9. Rumelhart DE, Durbin R, Golden R, Chauvin Y (1995) Bachpropagation: the basic theory. In: Chauvin Y, Rumelhart DE (eds) Backpropagation: theory, architectures, and application. LEA, Hillsdale, pp 1–34

    Google Scholar 

  10. Lampariello F, Sciandrone M (2001) Efficient training of RBF neural networks for pattern recognition. IEEE Trans Neural Netw 12(5):1235–1242

    Article  Google Scholar 

  11. Juang B-H, Katagiri S (1992) Discriminative learning for minimum error classification. IEEE Trans Signal Process 40(12):3043–3054

    Article  MATH  Google Scholar 

  12. Watanabe H, Yamaguchi T, Katagiri S (1997) Discriminative metric design for robust pattern recognition. IEEE Trans Pattern Anal Mach Intell 45(11):2655–2662

    Google Scholar 

  13. Holmes CC, Mallick BK (1998) Bayesian radial basis function of variable dimension. Neural Comput 10:1217–1233

    Article  Google Scholar 

  14. Kohonen T (1997) Self-organizing maps. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  15. Kubat M (1998) Decision trees can initialize radial-basis function networks. IEEE Trans Neural Netw 9:813–821

    Article  Google Scholar 

  16. Scholkopf B, Sung KK (1997) Comparing support vector machine with Gaussian kernels to radial basis function classifiers. IEEE Trans Signal Process 45:2758–2765

    Article  Google Scholar 

  17. Available at http://www.openresource.com/openres/archives/P/AIR.shtml

  18. Lang KJ, Witbrock MJ (1998) Learning to tell two spirals apart. In: Proceedings of the 1988 connectionist models summer school. Morgan Kaufmann, San Mateo

  19. Fahlman SE, Lebiere C (1990) The cascade correlation learning architecture. In: Toursky DS (ed) Advances in neural information processing system 2. Morgan Kaufmann, San Mateo

    Google Scholar 

  20. Lengelle R, Denoeux T (1996) Training MLPS layer by layer using an objective function for internal representations. Neural Netw 2(1):83–97

    Article  Google Scholar 

  21. Garavaglia SB (1999) The two spirals benchmark: lessons from the hidden layers. Int Jt Conf Neural Netw 2:1158–1163

    Google Scholar 

  22. Available at http://www.ics.uci.edu/∼mlearn/MLRepository.html

  23. Katagiri S, Juang BH, Lee CH (1998) Pattern recognition using a family of design algorithms based upon the generalized probabilistic descent method. Proc IEEE 86(11):2345–2373

    Article  Google Scholar 

  24. Sito W, Chow TWS (2004) Induction machine fault detection: using SOM-based RBF neural networks. IEEE Trans Ind Electron 51(1):183–194

    Article  Google Scholar 

  25. Chow TWS, Hai S (2004) Induction machine fault diagnostic analysis with wavelet analysis. IEEE Trans Ind Electron 51(3):558–565

    Article  Google Scholar 

  26. Chow TWS, Tan HZ (2000) HOS-based nonparametric and parametric methodologies for machine fault detection. IEEE Trans Ind Electron 47(5):1051–1059

    Article  Google Scholar 

  27. Chow TWS, Fei G (1995) Three phase induction machines asymmetrical fault identification using bispectrum. IEEE Trans Energy Convers 10(4):688–693

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, D., Chow, T.W.S. Improving the effectiveness of RBF classifier based on a hybrid cost function. Neural Comput & Applic 16, 395–405 (2007). https://doi.org/10.1007/s00521-006-0063-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-006-0063-9

Keywords

Navigation