Skip to main content
Log in

Biomimicry of plant root growth using bioinspired foraging model for data clustering

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Clustering is a popular data mining technique widely used in many fields. Recently, researches on swarm intelligence-based and bionic approaches for handing these clustering problems have made significant achievements. In this contribution, a bionic algorithm inspired by the intrinsic adaptability of plant root foraging behavior is designed and developed for data clustering. Especially, the foraging behaviors of plant root involve elongation, branching, and tropism based on the auxin-regulated mechanism. By incorporating the self-adaptive population-varying mechanism and self-adaptive root growth strategy, a new root system growth algorithm with adaptive population variation (RSGA_APV) is designed based on the root foraging and auxin-based regulation of the root system. The comprehensive experimental analysis is implemented that the proposed RSGA_APV is benchmarked against several state-of-the-art reference algorithms on a set of scalable benchmarks. Then, RSGA_APV is applied to resolve data clustering problems. Computational results verify the effectiveness and efficiency of our proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pyke GH (1984) Optimal foraging theory: a critical review. Annu Rev Ecol Evol Syst 15:523–575

    Article  Google Scholar 

  2. Catania KC (2012) Evolution of brains and behavior for optimal foraging: a tale of two predators. Proc Natl Acad Sci 109:10701–10708

    Article  Google Scholar 

  3. Rao RV (2016) Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int J Ind Eng Comput 7(1):19–34

    MathSciNet  Google Scholar 

  4. Ramezani F, Lu J, Taheri J, Hussain FK (2015) Evolutionary algorithm-based multi-objective task scheduling optimization model in cloud environments. World Wide Web 18(6):1737–1757

    Article  Google Scholar 

  5. Zhang G, Lu J, Gao Y (2015) Bi-level multi-follower decision making. Intell Syst Ref Libr 82:65–104

    Article  Google Scholar 

  6. Zhan ZH, Zhang J, Liu O (2009) Orthogonal learning particle swarm optimization. IEEE Trans Evol Comput 15(6):1763–1764

    Google Scholar 

  7. El-Abd M (2012) Performance assessment of foraging algorithms vs. evolutionary algorithms. Inf Sci 182(1):243–263

    Article  MathSciNet  Google Scholar 

  8. Socha K, Dorigo M (2008) Ant colony optimization for continuous domains. Eur J Op Res 185(3):1155–1173

    Article  MathSciNet  MATH  Google Scholar 

  9. Twomey C, Stützle T, Dorigo M, Manfrin M, Birattari M (2010) An analysis of communication policies for homogeneous multi-colony ACO algorithms. Inf Sci 180(12):2390–2404

    Article  Google Scholar 

  10. Kennedy J (2007) The particle swarm as collaborative sampling of the search space. Adv Complex Syst 10:191–213

    Article  MATH  Google Scholar 

  11. Shi Y, Eberhart RC (2009) Monitoring of particle swarm optimization. Front Comput Sci China 3(1):31–37

    Article  Google Scholar 

  12. Akay B, Karaboga D (2012) A modified Artificial Bee Colony algorithm for real-parameter optimization. Inf Sci 192(1):120–142

    Article  Google Scholar 

  13. McNickle GG, Clair CCS, Cahill JF (2009) Focusing the metaphor: plant root foraging behavior. Trends Ecol Evol 24(8):419–426

    Article  Google Scholar 

  14. de Kroon H, Mommer L (2006) Root foraging theory put to the test. Trends Ecol Evol 21:113–116

    Article  Google Scholar 

  15. Falik O, Reides P, Gersani M, Novoplansky A (2005) Root navigation by self inhibition. Plant, Cell Environ 28:562–569

    Article  Google Scholar 

  16. Karban R (2008) Plant behaviour and communication. Ecol Lett 11:727–739

    Article  Google Scholar 

  17. Kembel SW, Cahill JF (2005) Plant phenotypic plasticity belowground: a phylogenetic perspective on root foraging trade-offs. Am Nat 166:216–230

    Article  Google Scholar 

  18. Kembel SW, De Kroon H, Cahill JF Jr, Mommer L (2008) Improving the scale and precision of hypotheses to explain root foraging ability. Ann Bot 101(9):1295–1301

    Article  Google Scholar 

  19. Li MS, Ji TY, Tang WJ, Wu QH, Saunders JR (2010) Bacterial foraging algorithm with varying population. BioSystems 100:185–197

    Article  Google Scholar 

  20. Changhe L (2010) Particle swarm optimization in stationary and dynamic environments. University of Leicester, Leicester

    Google Scholar 

  21. Rubio G, Walk TC, Ge Z, Yan XL, Liao H, Lynch J (2002) Root gravitropism and below-ground competition among neighbouring plants: a modelling approach. Ann Bot 88:929–940

    Article  Google Scholar 

  22. Eapen D, Barroso ML, Ponce G, Campos ME, Cassab GI (2005) Hydrotropism: root growth responses to water. Trends Plant Sci 10(1):44–50

    Article  Google Scholar 

  23. Leitner D, Klepsch S, Bodner G, Schnepf A (2010) A dynamic root system growth model based on L-Systems Tropisms and coupling to nutrient uptake from soil. Plant Soil 332:177–192

    Article  Google Scholar 

  24. Dupuy L, Gregory PJ, Bengough AG (2010) Root growth models: towards a new generation of continuous approaches. J Exp Bot 61(8):2131–2143

    Article  Google Scholar 

  25. Banks A, Vincent J, Phalp K (2009) Natural strategies for search. Nat Comput 8:547–570

    Article  MathSciNet  MATH  Google Scholar 

  26. Bradbury JW, Vehrencamp SL (1998) Principles of animal communication. Sinauer, Sunderland

    Google Scholar 

  27. Karban R, Baldwin IT, Baxter KJ, Laue G, Felton GW (2000) Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia 125:66–71

    Article  Google Scholar 

  28. Karban R, Shiojiri K, Huntzinger M, McCall AC (2006) Damage-induced resistance in sagebrush: volatiles are key to intra- and interplant communication. Ecology 87:922–930

    Article  Google Scholar 

  29. Turkington R, Hamilton RS, Gliddon C (1991) Withinpopulation variation in localized and integrated responses of Trifolium repens to biotically patchy environments. Oecologia 86:183–192

    Article  Google Scholar 

  30. Heil M, Koch T, Hilpert A, Fiala B, Boland W, Linsenmair KE (2001) Extrafloral nectar production of the ant-associated plant, Macaranga tanarius is an induced, indirect, defensive response elicited by jasmonic acid. Proc Natl Acad Sci USA 98:1083–1088

    Article  Google Scholar 

  31. Heil M (2004) Induction of two indirect defences benefits lima bean (Phaseolus lunatus, Fabaceae) in nature. J Ecol 92:527–536

    Article  Google Scholar 

  32. Leyser O (2006) Dynamic integration of auxin transport and signalling. Curr Biol 16(11):R424–R433

    Article  Google Scholar 

  33. Dubrovsky JG, Sauer M, Napsucialy-Mendivil S, Ivanchenko MG, Friml J, Shishkova S, Celenza J, Benková E (2008) Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc Natl Acad Sci USA 105:8790–8794

    Article  Google Scholar 

  34. Laskowski M, Biller S, Stanley K, Kajstura T, Prusty R (2006) Expression profiling of auxin-treated Arabidopsis roots: toward a molecular analysis of lateral root emergence. Plant Cell Physiol 47:788–792

    Article  Google Scholar 

  35. Qin G, Gu H, Zhao Y, Ma Z, Shi G, Yang Y, Pichersky E, Chen H, Liu M, Chen Z, Qu LJ (2005) An indole-3-acetic acid carboxyl methyltransferase regulates Arabidopsis leaf development. Plant Cell 17:2693–2704

    Article  Google Scholar 

  36. Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and function. Plant Soil 321(1–2):153–187

    Article  Google Scholar 

  37. Liang J, Qu B, Suganthan P (2013) Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization, Technical Report, 2013

  38. Morrison RW, De Jong KA (1999) A test problem generator for non-stationary environments. In: Proceedings of the 1999 IEEE congress on evolutionary computation, IEEE Press, pp 2047–2053

  39. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm. J Glob Optim 39(3):459–471

    Article  MathSciNet  MATH  Google Scholar 

  40. Kennedy J (2007) The particle swarm as collaborative sampling of the search space. Adv Complex Syst 10:191–213

    Article  MATH  Google Scholar 

  41. Kämpf JH, Robinson D (2009) A hybrid CMA-ES and HDE optimisation algorithm with application to solar energy potential. Appl Soft Comput 9(2):738–745

    Article  Google Scholar 

  42. Sumathi S, Hamsapriya T, Surekha P (2008) Evolutionary intelligence: an introduction to theory and applications with Matlab. Springer, Heidelberg

    Google Scholar 

  43. Yan X, Zhu Y, Zhang H et al (2012) An adaptive bacterial foraging optimization algorithm with lifecycle and social learning. Discrete Dyn Nat Soc: 20

  44. Li MS, Ji TY, Tang WJ, Saundersb JR (2010) Bacterial foraging algorithm with varying population. Biosystems 100(3):185–197

    Article  Google Scholar 

  45. Auger A, Hansen N (2005) A restart CMA evolution strategy with increasing population size[C]//evolutionary computation 2005. In: Proceedings of the IEEE Congress on 2005, vol 2. pp 1769–1776

  46. Chen H, Zhu Y (2008) Optimization based on symbiotic multi-species coevolution. Appl Math Comput 205(1):47–67

    MathSciNet  MATH  Google Scholar 

  47. Eiben AE, Marchiori E, Valko VA (2004) Evolutionary algorithms with on-the-fly population size adjustment. In: Proceedings of the 6th international conference on parallel problem solving from nature, Birmingham, pp 315–324

  48. Derrac J, García S, Molina D et al (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18

    Article  Google Scholar 

  49. Wang H, Ni Q (2008) A new method of moving asymptotes for large-scale unconstrained optimization. Appl Math Comput 203:62–71

    MathSciNet  MATH  Google Scholar 

  50. Wolpert DH, Macready WG (1997) No free lunch theorems for search. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  51. Güngör Z, Ünler A (2007) K-harmonic means data clustering with simulated annealing heuristic. Appl Math Comput 184(2):199–209

    MathSciNet  MATH  Google Scholar 

  52. Derrac J, García S, Molina D et al (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18

    Article  Google Scholar 

  53. Santos JM, Embrechts M (2009) On the use of the adjusted rand index as a metric for evaluating supervised classification, artificial neural networks–ICANN. Springer, Berlin, Heidelberg, pp 175–184

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Foundation for Distinguished Young Scholars of China under Grant No. 61225012 and No. 71325002; National Natural Science Foundation of China under Grant No. 61503373, 61502318 and No. 61572123; Natural Science Foundation of Liaoning Province under Grand 2015020002, Specialized Research Fund of the Doctoral Program of Higher Education for the Priority Development Areas under Grant No. 20120042130003, and Liaoning BaiQianWan Talents Program under Grant No. 2013921068.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingwei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Wang, X., Yu, R. et al. Biomimicry of plant root growth using bioinspired foraging model for data clustering. Neural Comput & Applic 29, 819–836 (2018). https://doi.org/10.1007/s00521-016-2480-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2480-8

Keywords

Navigation