Skip to main content
Log in

Chaotic multi-verse optimizer-based feature selection

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The multi-verse optimizer (MVO) is a new evolutionary algorithm inspired by the concepts of multi-verse theory namely, the white/black holes, which represents the interaction between the universes. However, the MVO has some drawbacks, like any other evolutionary algorithms, such as slow convergence and getting stuck in local optima (maximum or minimum). This paper provides a novel chaotic MVO algorithm (CMVO) to avoid these drawbacks, where chaotic maps are used to improve the performance of MVO algorithm. The CMVO algorithm is applied to solve the feature selection problem, in which five benchmark datasets are used to evaluate the performance of CMVO algorithm. The results of CMVO is compared with standard MVO and two other swarm algorithms. The experimental results show that logistic chaotic map is the best chaotic map that increases the performance of MVO, and also the MVO is better than other swarm algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hancer E, Xue B, Karaboga D, Zhang M (2015) A binary ABC algorithm based on advanced similarity scheme for feature selection. Appl Soft Comput 36:334–348

    Article  Google Scholar 

  2. Esmel ME (2011) A novel image retrieval model based on the most relevant features. Knowl Based Syst 24(1):23–32

    Article  Google Scholar 

  3. Yousef M, Saçar Demirci MD, Khalifa W, Allmer J (2016) Feature selection has a large impact on one-class classification accuracy for micrornas in plants. Adv Bioinform 2016:5670851. doi:10.1155/2016/5670851

    Article  Google Scholar 

  4. Zawbaa HM, Emary E, Grosan C (2016) Feature selection via chaotic antlion optimization. PloS One 11(3):e0150652

    Article  Google Scholar 

  5. Espinosa HEP, Ayala-Solares JR (2016) The power of natural inspiration in control systems. Nat Inspir Comput Control Syst 40:1–10

    Article  Google Scholar 

  6. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, MHS’95., vol 1. New York, IEEE, pp 39–43

  7. Basturk B, Karaboga D (2006) An artificial bee colony (ABC) algorithm for numeric function optimization. In: IEEE swarm intelligence symposium, vol 8. pp 687–697

  8. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  9. Moradi P, Rostami M (2015) Integration of graph clustering with ant colony optimization for feature selection. Knowl Based Syst 84:144–161

    Article  Google Scholar 

  10. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98

    Article  Google Scholar 

  11. Zhang Y, Gong D, Hu Y, Zhang W (2015) Feature selection algorithm based on bare bones particle swarm optimization. Neurocomputing 148:150–157

    Article  Google Scholar 

  12. El Aziz MA, Hassanien AE (2016) Modified cuckoo search algorithm with rough sets for feature selection. Neural Comput Appl. doi:10.1007/s00521-016-2473-7

    Google Scholar 

  13. Emary E, Zawbaa HM, Hassanien AE (2016) Binary ant lion approaches for feature selection. Neurocomputing 213:54–65

    Article  Google Scholar 

  14. Anter AM, Hassanien AE, ElSoud MA, Kim T-H (2015) Feature selection approach based on social spider algorithm: case study on abdominal ct liver tumor. In: 2015 Seventh International Conference on Advanced Communication and Networking (ACN). IEEE, pp 89–94

  15. Yamany W, Emary E, Hassanien AE (2015) New rough set attribute reduction algorithm based on grey wolf optimization. In: 1st International Conference on Advanced Intelligent System and Informatics (AISI2015), Springer, Egypt, pp 241–251

  16. Nakamura RYM, Pereira LAM, Costa KA, Rodrigues D, Papa JP, Yang X-S (2012) BBA—a binary bat algorithm for feature selection. In: 2012 25th SIBGRAPI Conference on Graphics, Patterns and Images. IEEE, pp 291–297

  17. Jiang S, Yang S (2017) A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization. IEEE Trans Evolut Comput 21(1):65–82

    Article  Google Scholar 

  18. El Aziz MA, Ewees AA, Hassanien AE (2017) Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation. Exp Syst Appl 83:242–256

    Article  Google Scholar 

  19. Sindhu R, Ngadiran R, Yacob YM, Zahri NAH, Hariharan M (2017) Sine–cosine algorithm for feature selection with elitism strategy and new updating mechanism. Neural Comput Appl. doi:10.1007/s00521-017-2837-7

    Google Scholar 

  20. Zhou Z, Zhu S, Zhang D (2015) A novel K-harmonic means clustering based on enhanced firefly algorithm. In: International Conference on Intelligent Science and Big Data Engineering. Springer International Publishing, pp 140–149

  21. Wang G-G, Guo L, Gandomi AH, Hao G-S, Wang H (2014) Chaotic krill herd algorithm. Inf Sci 274:17–34

    Article  MathSciNet  Google Scholar 

  22. Mitić M, Vuković N, Petrović M, Miljković Z (2015) Chaotic fruit fly optimization algorithm. Knowl Based Syst 89:446–458

    Article  Google Scholar 

  23. Yu F, Li W, Tao J, Deng K, Ma L, He F (2017) Estimation of distribution algorithm combined with chaotic sequence for dynamic optimisation problems. Int J Comput Sci Math 8(1):12–19

    Article  MathSciNet  Google Scholar 

  24. Adarsh BR, Raghunathan T, Jayabarathi T, Yang X-S (2016) Economic dispatch using chaotic bat algorithm. Energy 96:666–675

    Article  Google Scholar 

  25. Gandomi AH, Yang X-S, Talatahari S, Alavi AH (2013) Firefly algorithm with chaos. Commun Nonlinear Sci Numer Simul 18(1):89–98

    Article  MathSciNet  MATH  Google Scholar 

  26. Saremi S, Mirjalili S, Lewis A (2014) Biogeography-based optimisation with chaos. Neural Comput Appl 25(5):1077–1097

    Article  Google Scholar 

  27. Gandomi AH, Yang X-S (2014) Chaotic bat algorithm. J Comput Sci 5(2):224–232

    Article  MathSciNet  Google Scholar 

  28. Chuang L-Y, Yang C-H, Li J-C (2011) Chaotic maps based on binary particle swarm optimization for feature selection. Appl Soft Comput 11(1):239–248

    Article  Google Scholar 

  29. Li M, Du W, Yuan L (2010) Feature selection of face recognition based on improved chaos genetic algorithm. In: 2010 Third International Symposium on Electronic Commerce and Security (ISECS). IEEE, pp 74–78

  30. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513

    Article  Google Scholar 

  31. Ellis GFR (2011) Does the multiverse really exist? Sci Am 305(2):38–43

    Article  MathSciNet  Google Scholar 

  32. Ning S-L, Wen-Biao Liu (2016) Black hole phase transition in massive gravity. Int J Theor Phys 55(7):3251–3259

    Article  MathSciNet  MATH  Google Scholar 

  33. Ren B, Zhong W (2011) Multi-objective optimization using chaos based PSO. Inf Technol J 10(10):1908–1916

    Article  Google Scholar 

  34. Bache K, Lichman M (2013) UCI machine learning repository. University of California, Irvine, School of Information and Computer Sciences. http://archive.ics.uci.edu/ml. Accessed 3 Jan 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. Ewees.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest, and this study was carried out without any funding sources.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ewees, A.A., El Aziz, M.A. & Hassanien, A.E. Chaotic multi-verse optimizer-based feature selection. Neural Comput & Applic 31, 991–1006 (2019). https://doi.org/10.1007/s00521-017-3131-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3131-4

Keywords

Navigation