Skip to main content
Log in

Removing ring artifacts in CBCT images via generative adversarial networks with unidirectional relative total variation loss

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Cone beam computed tomography (CBCT) is an important tool for clinical diagnosis and many industrial applications. However, ring artifacts usually appear in CBCT images, due to device responding inconsistence. This paper designs a generative adversarial network (GAN) to remove ring artifacts and meanwhile to retain important texture details in CBCT images. This method firstly transforms ring artifacts in Cartesian coordinates to stripe artifacts in polar coordinates, which is very helpful for removing ring artifacts. Then, we design a new loss function for GAN, including three parts: unidirectional relative total variation loss, perceptual loss and adversarial loss. Further, inspired by super-resolution generative adversarial networks, we use very deep residual networks for both generator and discriminator. Experimental results show that the proposed method is more effective for ring artifacts removal, compared to our baseline and some traditional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fox EC, Nixon O, Agwani MS, Dykaar DR, Mantell TJ, Sabila RW (1998) High-speed linear CCD sensor with pinned photodiode photosite for low-lag and low-noise imaging. In: Solid state sensor arrays: development and applications II, vol 3301, pp 17–27, International Society for Optics and Photonics

  2. Seibert JA, Boone JM (2015) Flat-field correction technique for digital detectors. In: Proceedings of SPIE, vol 3336, pp 348–354

  3. Liang Lihong L H (2004) The corrected research of flat-panel detector imaging system. Acta Photonica Sin 33(10):1277–1280

    Google Scholar 

  4. Jiang XG, Zhang KZ, Li CG, Wang Y (2007) Extended applications of image flat-field correction method. Acta Photonica Sin 36(9):1587–1590

    Google Scholar 

  5. Tang X, Ning R, Yu R, Conover D (2001) Cone beam volume CT image artifacts caused by defective cells in X-ray flat panel imagers and the artifact removal using a wavelet-analysis-based algorithm. Med Phys 28(5):812–825

    Article  Google Scholar 

  6. Kowalski G (1978) Suppression of ring artefacts in CT fan-beam scanners. IEEE Trans Nucl Sci 25(5):1111–1116

    Article  Google Scholar 

  7. Raven C (1998) Numerical removal of ring artifacts in microtomography. Rev Sci Instrum 69(8):2978–2980

    Article  Google Scholar 

  8. Münch B, Trtik P, Marone F, Stampanoni M (2009) Stripe and ring artifact removal with combined wavelet fourier filtering. Opt Express 17(10):8567–8591

    Article  Google Scholar 

  9. Haibel A, Boin M (2006) Compensation of ring artefacts in synchrotron tomographic images. Opt Express 14(25):12071–12075

    Article  Google Scholar 

  10. Ashrafuzzaman ANM, Lee SY, Hasan MK (2011) A self-adaptive approach for the detection and correction of stripes in the sinogram: suppression of ring artifacts in CT imaging. Eurasip J Adv Signal Process 2011(1):1–13

    Article  Google Scholar 

  11. Titarenko S, Titarenko V, Kyrieleis A, Withers PJ, Carlo FD (2011) Suppression of ring artefacts when tomographing anisotropically attenuating samples. J Synchrotron Radiat 18(3):427–435

    Article  Google Scholar 

  12. Miqueles EX, Rinkel J, O’Dowd F, Bermdez JSV (2014) Generalized Titarenko’s algorithm for ring artefacts reduction. J Synchrotron Radiat 21(6):1333–1346

    Article  Google Scholar 

  13. Titarenko V (2016) Analytical formula for two-dimensional ring artefact suppression. J Synchrotron Radiat 23(6):1447–1461

    Article  Google Scholar 

  14. Mohan KA, Venkatakrishnan SV, Drummy LF, Simmons J (2014) Model-based iterative reconstruction for synchrotron X-ray tomography. In: IEEE international conference on acoustics, speech and signal processing, pp 6909–6913

  15. Pierre P, Alessandro M (2015) Ring artifacts correction in compressed sensing tomographic reconstruction. J Synchrotron Radiat 22(Pt 5):1268–1278

    Google Scholar 

  16. Kyriakou Y, Prell D, Kalender WA (2009) Ring artifact correction for high-resolution micro CT. Phys Med Biol 54(17):N385

    Article  Google Scholar 

  17. Prell D, Kyriakou YKalender W A (2009) Comparison of ring artifact correction methods for flat-detector CT. Phys Med Biol 54(12):3881

    Article  Google Scholar 

  18. Chen YW, Duan G, Fujita A, Hirooka K, Ueno Y (2009) Ring artifacts reduction in cone-beam CT images based on independent component analysis. In: Instrumentation and measurement technology conference, 2009. I2MTC ’09. IEEE, pp 1734–1737

  19. Chen YW, Duan G (2009) Independent component analysis based ring artifact reduction in cone-beam CT images. In: IEEE international conference on image processing, pp 4137–4140

  20. Yan L, Wu T, Zhong S, Zhang Q (2016) A variation-based ring artifact correction method with sparse constraint for flat-detector CT. Phys Med Biol 61(3):1278

    Article  Google Scholar 

  21. Sijbers J, Postnov A (2004) Reduction of ring artefacts in high resolution micro-CT reconstructions. Phys Med Biol 49(14):N247

    Article  Google Scholar 

  22. Brun F, Kourousias G, Dreossi D, Mancini L (2009) An improved method for ring artifacts removing in reconstructed tomographic images. Springer, Berlin

    Book  Google Scholar 

  23. Wei Z, Wiebe S, Chapman D (2013) Ring artifacts removal from synchrotron CT image slices. J Instrum 8(6):C06006

    Article  Google Scholar 

  24. Bouali M, Ladjal S (2011) Toward optimal destriping of modis data using a unidirectional variational model. IEEE Trans Geosci Remote Sens 49(8):2924–2935

    Article  Google Scholar 

  25. Xu L, Yan Q, Xia Y, Jia J (2012) Structure extraction from texture via relative total variation. ACM Trans Graph 31(6):139

    Google Scholar 

  26. Green M, Marom EM, Kiryati N, Konen E, Mayer A (2016) Efficient low-dose CT denoising by locally-consistent non-local means (LC-NLM). In: International conference on medical image computing and computer-assisted intervention, pp 423–431, Springer

  27. Liu Y, Zhang Y (2018) Low-dose CT restoration via stacked sparse denoising autoencoders. Neurocomputing 284:80–89

    Article  Google Scholar 

  28. Ronneberger O (2017) Invited talk: U-Net convolutional networks for biomedical image segmentation. In: Bildverarbeitung für die Medizin 2017, p 3, Springer

  29. Deng Y, Bao F, Deng X, Wang R, Dai Q (2016) Deep and structured robust information theoretic learning for image analysis. IEEE Trans Image Process 25:4209–4221

    Article  MathSciNet  MATH  Google Scholar 

  30. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

  31. Deng Y, Ren Z, Kong Y, Bao F, Dai Q (2017) A hierarchical fused fuzzy deep neural network for data classification. IEEE Trans Fuzzy Syst 25(4):1006–1012

    Article  Google Scholar 

  32. Ledig C, Theis L, Huszar F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J, Wang Z et al (2017) Photo-realistic single image super-resolution using a generative adversarial network, In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4681–4690

  33. Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville AC (2017) Improved training of Wasserstein GANs. In: International conference on neural information processing systems, pp 5769–5779

  34. Ji Y, Zhang H, Wu QJ (2018) Saliency detection via conditional adversarial image-to-image network. Neurocomputing 316:357–368

    Article  Google Scholar 

  35. Zhang H, Sun Y, Liu L, Wang X, Li L, Liu W (2018) ClothingOut: a category-supervised GAN model for clothing segmentation and retrieval. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3691-y

  36. Brock A, Lim T, Ritchie JM, Weston N (2016) Neural photo editing with introspective adversarial networks. ArXiv preprint arXiv:1609.07093

  37. Deng Y, Shen Y, Jin H (2017) Disguise adversarial networks for click-through rate prediction. In: Proceedings of the 26th international joint conference on artificial intelligence, AAAI Press, pp 1589-1595

  38. Deng Y, Chen KW, Shen Y, Jin H (2018) Adversarial active learning for sequences labeling and generation. In: Proceedings of the twenty-seventh international joint conference on artificial intelligence, pp 4012–4018, International Joint Conferences on Artificial Intelligence Organization

  39. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. ArXiv preprint arXiv:1409.1556

  40. Yang Q, Yan P, Zhang Y, Yu H, Shi Y, Mou X, Kalra MK, Zhang Y, Sun L, Wang G (2017) Low dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans Med Imaging PP(99):1–1

    Google Scholar 

  41. Zhang H, Sindagi V, Patel VM (2017) Image de-raining using a conditional generative adversarial network. ArXiv preprint arXiv:1701.05957

  42. Kupyn O, Budzan V, Mykhailych M, Mishkin D, Matas J (2017) Deblurgan: blind motion deblurring using conditional adversarial networks. ArXiv preprint arXiv:1711.07064

  43. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: International conference on neural information processing systems, pp 2672–2680

  44. Creswell A, White T, Dumoulin V, Kai A, Sengupta B, Bharath AA (2018) Generative adversarial networks: an overview. IEEE Sig Process Mag 35(1):53–65

    Article  Google Scholar 

  45. Li J, J-h Cheng, J-y Shi, Huang F (2012) Brief introduction of back propagation (BP) neural network algorithm and its improvement. In: Jin D, Lin S (eds) Advances in computer science and information engineering. Springer, Berlin, pp 553–558

    Chapter  Google Scholar 

  46. Gribbon KT, Bailey DG (2004) A novel approach to real-time bilinear interpolation. In: IEEE international conference on field-programmable technology, pp 126–131

  47. Huo Q, Li J, Lu Y (2016) Removing ring artefacts in CT images via unidirectional relative variation model. Electron Lett 52(22):1838–1839

    Article  Google Scholar 

  48. Dong C, Loy CC, He K, Tang X (2016) Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell 38(2):295–307

    Article  Google Scholar 

  49. Shi W, Caballero J, Huszár F, Totz J, Aitken AP, Bishop R, Rueckert D, Wang Z (2016) Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1874–1883

  50. Johnson J, Alahi A, Li FF (2016) Perceptual losses for real-time style transfer and super-resolution. In: European conference on computer vision, pp 694–711

    Chapter  Google Scholar 

  51. Bruna J, Sprechmann P, LeCun Y (2015) Super-resolution with deep convolutional sufficient statistics. ArXiv preprint arXiv:1511.05666

  52. Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. ArXiv preprint arXiv:1412.6980

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61271374). The authors would like thank the anonymous reviews for their helpful suggestions which have led to great improvement on this paper, especially on the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwu Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Li, J. & Enoh, M. Removing ring artifacts in CBCT images via generative adversarial networks with unidirectional relative total variation loss. Neural Comput & Applic 31, 5147–5158 (2019). https://doi.org/10.1007/s00521-018-04007-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-04007-6

Keywords

Navigation