Skip to main content
Log in

A multi-objective particle swarm for constraint and unconstrained problems

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Multi-objective particle swarm optimization algorithms (MOPS) are used successfully to solve real-life optimization problems. The multi-objective algorithms based on particle swarm optimization (PSO) have seen various adaptations to improve convergence to the true Pareto-optimal front and well-diverse non-dominated solution. In some cases, the values of the MOPS control parameters need to be fine-tuned while solving a specific multi-objective optimization problem. It is challenge to correctly fine-tune the value of the PSO control parameters when the true non-dominated solutions are not known as in case of a real-life optimization problem. To address this challenge, a multi-objective particle swarm optimization algorithm that uses constant PSO control parameters was developed. The new algorithm called NF-MOPSO is capable of solving different multi-objective optimization problems without the need of fine-tuning the value of the PSO control parameters. The NF-MOPSO enhances the convergence to the true Pareto-optimal front and improves the diversity of Pareto-optimal using the same fixed values for all the PSO control parameters. The NF-MOPSO uses constant values of the PSO control parameters such as acceleration coefficients \(c_{1}\) and \(c_{2}\), and inertia weight \(\omega\). A Gaussian mutation is applied to the position of particles to increase diversity while a penalty function is used as constraint mechanism. The algorithm has been tested on 45 well-known benchmark test functions using four performance metrics. The test results demonstrate the capability of the NF-MOPSO to solve different multi-objective optimization problems using the same value of the PSO control parameters. The capability of the NF-MOPSO was demonstrated in real-life optimization problem by solving a multi-objective optimization problem of a neutron radiography collimator. The results of collimator optimization showed that the optimizer was able to provide a set of Pareto optimal solutions from which the geometrical design parameters of a collimator could be retrieved for given application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Osyczka A (1985) Multicriteria optimization for engineering design. In: Gero J (ed) Design optimization. Academic Press, London, UK, pp 193–227. https://doi.org/10.1016/b978-0-12-280910-1.50012-x

    Chapter  Google Scholar 

  2. Kumar V, Minz S (2014) Multi-objective particle swarm optimization: an Introduction. Smart Comput Rev 4(5):335–353

    Article  Google Scholar 

  3. Deb K (2001) Multi-objective optimization. Multi-objective optimization using evolutionary algorithms. Wiley, West Sussex, pp 13–45

    MATH  Google Scholar 

  4. Lalwani S, Singhal S, Kumar R, Gupta N (2013) A comprehensive survey: applications of multi-objective particle swarm optimization (MOPSO) algorithm. Trans Combin 2(1):39–101. https://doi.org/10.22108/TOC.2013.2834

    Article  MathSciNet  MATH  Google Scholar 

  5. Kulkarni MNK, Patekar MS, Bhoskar MT, Kulkarni MO, Kakandikar GM, Nandedkar VM (2015) Particle swarm optimization applications to mechanical engineering—a review. Mater Today Proc 2(4–5):2631–2639. https://doi.org/10.1016/j.matpr.2015.07.223

    Article  Google Scholar 

  6. Zhang Y, Wang S, Ji G (2015) A comprehensive survey on particle swarm optimization algorithm and its applications. Math Probl Eng 2015:1–38. https://doi.org/10.1155/2015/931256

    Article  MathSciNet  MATH  Google Scholar 

  7. Vandenbergh F, Engelbrecht A (2006) A study of particle swarm optimization particle trajectories. Inf Sci 176(8):937–971. https://doi.org/10.1016/j.ins.2005.02.003

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhang C, Sun J (2009) An alternate two phases particle swarm optimization algorithm for flow shop scheduling problem. Expert Syst Appl 36(3):5162–5167. https://doi.org/10.1016/j.eswa.2008.06.036

    Article  Google Scholar 

  9. NAKISA (2014) A survey: particle swarm optimization based algorithms to solve premature convergence problem. J Comput Sci 10(9):1758–1765. https://doi.org/10.3844/jcssp.2014.1758.1765

    Article  Google Scholar 

  10. Rezaee Jordehi A, Jasni J (2013) Parameter selection in particle swarm optimisation: a survey. J Exp Theor Artif Intell 25(4):527–542. https://doi.org/10.1080/0952813x.2013.782348

    Article  Google Scholar 

  11. Coello Coello CA, Reyes-Sierra M (2006) Multi-objective particle swarm optimizers: a survey of the state-of-the-art. Int J Comput Intell Res 2(3):287–308. https://doi.org/10.5019/j.ijcir.2006.68

    Article  MathSciNet  Google Scholar 

  12. Atyabi A, Samadzadegan S (2011) Particle swarm optimization: a survey. In: Walters LP (ed) Applications of swarm intelligence. Nova Science Publishers, New York, UK, pp 167–179

    Google Scholar 

  13. Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8(3):256–279. https://doi.org/10.1109/tevc.2004.826067

    Article  Google Scholar 

  14. Banks A, Vincent J, Anyakoha C (2007) A review of particle swarm optimization. Part I: background and development. Nat Comput 6(4):467–484. https://doi.org/10.1007/s11047-007-9049-5

    Article  MathSciNet  MATH  Google Scholar 

  15. Pedersen MEH, Chipperfield AJ (2010) Simplifying particle swarm optimization. Appl Soft Comput 10(2):618–628. https://doi.org/10.1016/j.asoc.2009.08.029

    Article  Google Scholar 

  16. Cheng T, Chen M, Fleming PJ, Yang Z, Gan S (2017) A novel hybrid teaching learning based multi-objective particle swarm optimization. Neurocomputing 222:11–25. https://doi.org/10.1016/j.neucom.2016.10.001

    Article  Google Scholar 

  17. Cheng S, Zhan H, Shu Z (2016) An innovative hybrid multi-objective particle swarm optimization with or without constraints handling. Appl Soft Comput 47:370–388. https://doi.org/10.1016/j.asoc.2016.06.012

    Article  Google Scholar 

  18. Dai C, Wang Y, Ye M (2015) A new multi-objective particle swarm optimization algorithm based on decomposition. Inf Sci 325:541–557. https://doi.org/10.1016/j.ins.2015.07.018

    Article  Google Scholar 

  19. Lin Q, Li J, Du Z, Chen J, Ming Z (2015) A novel multi-objective particle swarm optimization with multiple search strategies. Eur J Oper Res 247(3):732–744. https://doi.org/10.1016/j.ejor.2015.06.071

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhu Q, Lin Q, Chen W, Wong KC, Coello Coello CA, Li J, Chen J, Zhang J (2017) An external archive-guided multiobjective particle swarm optimization algorithm. IEEE Trans Cybern 47(9):2794–2808. https://doi.org/10.1109/TCYB.2017.2710133

    Article  Google Scholar 

  21. Fan J (2010) An improving multi-objective particle swarm optimization. Web Inf Syst Min Sanya. https://doi.org/10.1007/978-3-642-16515-3_1

    Article  Google Scholar 

  22. Beheshti Z, Shamsuddin SM (2015) Non-parametric particle swarm optimization for global optimization. Appl Soft Comput 28:345–359. https://doi.org/10.1016/j.asoc.2014.12.015

    Article  Google Scholar 

  23. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: The IEEE international joint conference on neural networks, 1995. IEEE, New Jersey, pp 1942–1948. https://doi.org/10.1109/ICNN.1995.488968

  24. Abraham A, Guo H, Liu H (2006) Swarm intelligence: foundations, perspectives and applications. Stud Comput Intell (SCI) 26:3–25. https://doi.org/10.1007/978-3-540-33869-7_1

    Article  Google Scholar 

  25. Engelbrecht AP (2007) Computational swarm intelligence. Computational intelligence: an introduction. Wiley, New Jersey, pp 285–411

    Google Scholar 

  26. Bergh FVD, Engelbrecht AP (2001) Effects of swarm size on cooperative particle swarm optimizers. In: Proceedings of GECCO-2001, San Francisco, pp 892–899

  27. Yassin IM, Taib MN, Adnan R, Salleh MKM, Hamzah MK (2012) Effect of swarm size parameter on binary particle swarm optimization-based NARX structure selection. In: IEEE symposium on industrial electronics and applications, Bandung, 2012. IEEE, pp 219–223. https://doi.org/10.1109/ISIEA.2012.6496632

  28. Carlisle A, Dozier G (2001) An off-the-shelf PSO. In: Proceedings of the workshop on particle swarm optimization, Indianapolis, pp 1–6

  29. Lin Y-T, Huang Y-M, Cheng S-C (2010) An automatic group composition system for composing collaborative learning groups using enhanced particle swarm optimization. Comput Educ 55(4):1483–1493. https://doi.org/10.1016/j.compedu.2010.06.014

    Article  Google Scholar 

  30. Liu Q, Wei W, Yuan H, Zhan Z-H, Li Y (2016) Topology selection for particle swarm optimization. Inf Sci 363(1):154–173. https://doi.org/10.1016/j.ins.2016.04.050

    Article  Google Scholar 

  31. Higashi N, Iba H (2003) Particle swarm optimization with Gaussian mutation In: 2003 IEEE swarm intelligence symposium, Indianapolis, 2003. IEEE, pp 72–79. https://doi.org/10.1109/SIS.2003.1202250

  32. Stacey A, Jancic M, Grundy I (2003) Particle swarm optimization with mutation. In: The 2003 congress on evolutionary computation, Canberra, pp 1425–1430. https://doi.org/10.1109/CEC.2003.1299838

  33. Iwasaki N, Yasuda K, Ueno G (2006) Dynamic parameter tuning of particle swarm optimization. Trans Electr Electron Eng 1(4):353–363. https://doi.org/10.1002/tee.20078

    Article  Google Scholar 

  34. Shi Y, Eberhart RA (1998) Modified particle swarm optimizer. In: IEEE international conference on evolutionary computation, Anchorage, 1988. IEEE, pp 69–73. https://doi.org/10.1109/ICEC.1998.699146

  35. Zhang Y, Zhao Y, Fu X, Xu J (2016) A feature extraction method of the particle swarm optimization algorithm based on adaptive inertia weight and chaos optimization for Brillouin scattering spectra. Opt Commun 376:56–66. https://doi.org/10.1016/j.optcom.2016.04.049

    Article  Google Scholar 

  36. Lin W-C, Yin Y, Cheng S-R, Cheng TCE, Wu C-H, Wu C-C (2017) Particle swarm optimization and opposite-based particle swarm optimization for two-agent multi-facility customer order scheduling with ready times. Appl Soft Comput 52:877–884. https://doi.org/10.1016/j.asoc.2016.09.038

    Article  Google Scholar 

  37. Eberhart RC, Shi Y (2000) Comparing inertia weights and constriction factors in particle swarm optimization. In: The IEEE congress on evolutionary computation, La Jolla, 2000. IEEE, pp 84–88. https://doi.org/10.1109/CEC.2000.870279

  38. Cleghorn CW, Engelbrecht AP (2017) Particle swarm stability: a theoretical extension using the non-stagnate distribution assumption. Swarm Intell 12(1):1–22. https://doi.org/10.1007/s11721-017-0141-x

    Article  Google Scholar 

  39. Engelbrecht AP (2007) Particle swarm optimization. Computational intelligence: an introduction. Wiley, West Sussex, pp 289–357

    Chapter  Google Scholar 

  40. Peng J, Chen Y, Eberhart R (2000) Battery pack state of charge estimator design using computational intelligence approaches. In: Fifteenth annual battery conference on applications and advances, Long Beach, 2000. IEEE, pp 173–177. https://doi.org/10.1109/BCAA.2000.838400

  41. Cooren Y, Clerc M, Siarry P (2009) MO-TRIBES, an adaptive multiobjective particle swarm optimization algorithm. Comput Optim Appl 49(2):379–400. https://doi.org/10.1007/s10589-009-9284-z

    Article  MathSciNet  MATH  Google Scholar 

  42. Cagnina L, Esquivel S, Coello CAC (2005) A particle swarm optimizer for multi-objective optimization. J Comput Sci Technol 5(4):204–210

    Google Scholar 

  43. de Miranda PeBC, de Carvalho ACPLF, Soares C (2012) Combining a multi-objective optimization approach with meta-learning for SVM parameter selection. In: IEEE international conference on systems, man, and cybernetics (SMC), Seoul, South Korea, 2012. IEEE, pp 2909–2914. https://doi.org/10.1109/ICSMC.2012.6378235

  44. Dupont G, Adam S, Lecourtier Y, Grilheres B (2008) Multi objective particle swarm optimization using enhanced dominance and guide selection. Int J Comput Intell Res 4(2):145–158. https://doi.org/10.5019/j.ijcir.2008.134

    Article  MathSciNet  Google Scholar 

  45. Fan Z, Wang T, Cheng Z, Li G, Gu F (2017) An improved multiobjective particle swarm optimization algorithm using minimum distance of point to line. Shock Vib 2017:1–16. https://doi.org/10.1155/2017/8204867

    Article  Google Scholar 

  46. López J, Lanzarini L, De Giusti A (2010) VarMOPSO: multi-objective particle swarm optimization with variable population size. In: Kuri-Morales (ed) Advances in artificial intelligence—IBERAMIA 2010, vol 6433 (Lecture notes in computer science). Springer, Berlin, pp 60–69. https://doi.org/10.1007/978-3-642-16952-6_7

  47. Pellegrini R, Serani A, Leotardi C, Iemma U, Campana EF, Diez M (2017) Formulation and parameter selection of multi-objective deterministic particle swarm for simulation-based optimization. Appl Soft Comput 58:714–731. https://doi.org/10.1016/j.asoc.2017.05.013

    Article  Google Scholar 

  48. Santana RA, Pontes MR, Bastos-Filho CJA (2009) A multiple objective particle swarm optimization approach using crowding distance and roulette wheel. In: Ninth international conference on intelligent systems design and applications, Pisa, Italy, 2009. IEEE, pp 237–242. https://doi.org/10.1109/ISDA.2009.73

  49. Santana-Quintero LV, Ramírez-Santiago N, Coello Coello CA (2008) Towards a more efficient multi-objective particle swarm optimizer. In: Bui LT (ed) Multi-objective optimization in computational intelligence, 1st edn. IGI Global, London, pp 76–105. https://doi.org/10.4018/978-1-59904-498-9.ch004

    Chapter  Google Scholar 

  50. Sun Y, Gao Y, Shi X (2019) Chaotic multi-objective particle swarm optimization algorithm incorporating clone immunity. Mathematics 7(2):1–16. https://doi.org/10.3390/math7020146

    Article  Google Scholar 

  51. Toscano-Pulido G, Coello CAC, Santana-Quintero LV (2007) EMOPSO: a multi-objective particle swarm optimizer with emphasis on efficiency. In: 4th international conference on evolutionary multi-criterion optimization, Matshushima (Lecture notes in computer science), 2007. Springer, pp 272–285. https://doi.org/10.1007/978-3-540-70928-2_23

  52. Tripathi PK (2007) Adaptive mufti-objective particle swarm optimization algorithm. In: IEEE congress on evolutionary computation, Singapore, 2007. IEEE, pp 2281–2288. https://doi.org/10.1109/CEC.2007.4424755

  53. Parsopoulos KE, Vrahatis MN (2008) Multi-objective particles swarm optimization approaches. In: Bui LT, Alam S (eds) Multi-objective optimization in computational intelligence: theory and practice. IGI Global, Hershey, pp 20–42. https://doi.org/10.13140/2.1.5189.4721

    Chapter  Google Scholar 

  54. Tripathi PK, Bandyopadhyay S, Pal SK (2007) Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients. Inf Sci 177(22):5033–5049. https://doi.org/10.1016/j.ins.2007.06.018

    Article  MathSciNet  MATH  Google Scholar 

  55. Wang H, Yen GG (2015) Adaptive multiobjective particle swarm optimization based on parallel cell coordinate system. IEEE Trans Evol Comput 19(1):1–18. https://doi.org/10.1109/tevc.2013.2296151

    Article  MathSciNet  Google Scholar 

  56. Han H, Lu W, Qiao J (2017) An adaptive multiobjective particle swarm optimization based on multiple adaptive methods. IEEE Trans Cybern 47(9):2754–2767. https://doi.org/10.1109/TCYB.2017.2692385

    Article  Google Scholar 

  57. Coello CAC, Lamont GB, Veldhuizen DAV (2007) Basic concepts. Evolutionary algorithms for solving multi-objective problems. Springer, Berlin, pp 1–57

    MATH  Google Scholar 

  58. Jordehi AR (2015) A review on constraint handling strategies in particle swarm optimisation. Neural Comput Appl 26(2015):1265–1275. https://doi.org/10.1007/s00521-014-1808-5

    Article  Google Scholar 

  59. Huband S, Hingston P, Barone L, While L (2006) A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans Evol Comput 10(5):477–506. https://doi.org/10.1109/TEVC.2005.861417

    Article  MATH  Google Scholar 

  60. Coello CAC, Lamont GB, Veldhuizen DAV (2007) MOEA testing and analysis. In: Goldberg DE, Koza JR (eds) Evolutionary algorithms for solving multi-objective problems, 2nd edn. Springer, New York, pp 233–276. https://doi.org/10.1007/978-0-387-36797-2

    Chapter  MATH  Google Scholar 

  61. Deb K (2001) Salient issues of multi-objective evolutionary algorithms. Multi-objective optimization using evolutionary algorithm. Wiley, West Sussex, pp 301–424

    MATH  Google Scholar 

  62. Coello CAC, Cortes NC (2005) Solving multiobjective optimization problems using an artificial immune system. Genet Program Evol Mach 6(2):163–190. https://doi.org/10.1007/s10710-005-6164-x

    Article  Google Scholar 

  63. Van Veldhuizen DA, Lamont GB (1999) Multi objective evolutionary algorithm test suites. In: ACM symposium on applied computing, San Antonio, 1999. ACM, pp 351–357. https://doi.org/10.1145/298151.298382

  64. Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comput 8(2):173–195. https://doi.org/10.1162/106365600568202

    Article  Google Scholar 

  65. Deb K, Thiele L, Laumanns M, Zitzler E (2002) Scalable test problems for evolutionary multiobjective optimization. In: Proceedings of the 2002 congress on evolutionary computation, Honolulu, 2002. IEEE, pp 825–830. https://doi.org/10.1109/CEC.2002.1007032

  66. Li H, Zhang Q (2009) Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II. IEEE Trans Evol Comput 13(2):284–302. https://doi.org/10.1109/TEVC.2008.925798

    Article  Google Scholar 

  67. Garcia S, Trinh CT (2019) Comparison of multi-objective evolutionary algorithms to solve the modular cell design problem for novel biocatalysis. Processes 7(6):1–13. https://doi.org/10.3390/pr7060361

    Article  Google Scholar 

  68. Van Veldhuizen DA, Lamont GB (1998) Evolutionary computation and convergence to a Pareto front. In: Late breaking papers at the genetic programming, Stanford, 1998. Stanford University Bookstore, pp 221–228

  69. Zitzler E, Thiele L, Laumanns M, Fonseca CM, Fonseca VGd (2003) Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput 7(2):117–132. https://doi.org/10.1109/TEVC.2003.810758

    Article  Google Scholar 

  70. Schott JR (1995) MCGA performance parameters. In: Fault tolerant design using single and multicriteria genetic algorithm optimization. Master’s thesis, Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, Cambridge, Massachusetts, USA, pp 135–138

  71. Arnold K, Gosling J, Holmes D (2000) The java programming language. Addison-Wesley Longman Publishing Co, Boston

    MATH  Google Scholar 

  72. Martínez SZ, Coello CAC (2011) A multi-objective particle swarm optimizer based on decomposition. In: 13th annual conference on genetic and evolutionary computation, Dublin, 2011. pp 69–76. https://doi.org/10.1145/2001576.2001587

  73. Sierra MR, Coello CAC (2005) Improving PSO-based multi-objective optimization using crowding, mutation and e-dominance. In: Coello CAC, Hernández Aguirre A, Zitzler E (eds) Evolutionary multi-criterion optimization, Marzo de. Springer, pp 505–519. https://doi.org/10.1007/978-3-540-31880-4_35

    Chapter  MATH  Google Scholar 

  74. Durillo JJ, García-Nieto J, Nebro AJ, Coello CAC, Luna F, Alba E (2009) Multi-objective particle swarm optimizers: an experimental comparison. In: The 5th international conference on evolutionary multi-criterion optimization, Nantes, 2009. Springer, pp 495–509. https://doi.org/10.1007/978-3-642-01020-0_39

  75. Pulido GT, Coello CAC (2004) A constraint-handling mechanism for particle swarm optimization. In: The 2004 congress on evolutionary computation, Portland. IEEE, pp 1396–1403. https://doi.org/10.1109/CEC.2004.1331060

  76. Domínguez JSH, Pulido GT (2011) A comparison on the search of particle swarm optimization and differential evolution on multi-objective optimization. In: IEEE congress of evolutionary computation, Ritz-Carlton, New Orleans, LA, USA, 2011. IEEE. https://doi.org/10.1109/CEC.2011.5949858

  77. Godinez AC, Espinosa LEM, Montes EM (2010) An experimental comparison of multiobjective algorithms: NSGA-II and OMOPSO. In: IEEE electronics, robotics and automotive mechanics conference, Morelos, 2010. IEEE, pp 28–33. https://doi.org/10.1109/CERMA.2010.13

  78. Mishra BSP, Dehuri S, Cho S-B (2015) Swarm intelligence in multiple and many objectives optimization: a survey and topical study on EEG signal analysis. Stud Comput Intell 592:27–73. https://doi.org/10.1007/978-3-662-46309-3_2

    Article  Google Scholar 

  79. de Carvalho AB, Pozo A (2012) Measuring the convergence and diversity of CDAS multi-objective particle swarm optimization algorithms: a study of many-objective problems. Neurocomputing 75(1):43–51. https://doi.org/10.1016/j.neucom.2011.03.053

    Article  Google Scholar 

  80. Wang J, Wang D (2008) Particle swarm optimization with a leader and followers. Prog Natl Sci 18(11):1437–1443. https://doi.org/10.1016/j.pnsc.2008.03.029

    Article  Google Scholar 

  81. Geetika SJ (2015) Hybridization of particle swarm optimization—a survey. Int J Sci Res 4(1):2417–2420

    Google Scholar 

  82. Brits R, Engelbrecht AP, Fvd B (2007) Locating multiple optima using particle swarm optimization. Appl Math Comput 189(2):1859–1883. https://doi.org/10.1016/j.amc.2006.12.066

    Article  MathSciNet  MATH  Google Scholar 

  83. Barton JP (1976) Neutron radiography—an overview. In: Practical application of neutron radiography and gaging. American Society for Testing and Materials STP 586, Philadelphia, pp 5–19

  84. Domanus JC, Greim L (1992) Collimators. Practical neutron radiography. Kluwer Academic Publishers, Brussels, pp 96–126

    Chapter  Google Scholar 

  85. Domanus JC, Markgref JFW (1987) Introduction. In: Markgref JFW (ed) Collimators for thermal neutron radiography an overview, 1st edn. Springer, Netherlands, p 5

    Google Scholar 

  86. Kobayashi H (1999) Design and basic character of neutron collimator on radiography. In: The sixth Asian symposium on research reactors, Mito, 1999, vol 9. Japan Atomic Energy Research Institute, pp 367–372

  87. Amalia AF, Budhi W, Prabowo UN, Suparta GB (2018) The image quality analysis of neutron digital radiography through the variation of multiple image capturing. In: International conference on science and applied science, Surakarta, 2018. AIP Conference Proceedings, pp 1–8. https://doi.org/10.1063/1.5054544

  88. Guo Z, Zou Y, Lu Y, Yan X, Peng S, Zhu K, Tang G, Mo D, Chen J (2012) Neutron radiography with compact accelerator at Peking University: problems and solutions. Phys Proc 26:70–78. https://doi.org/10.1016/j.phpro.2012.03.011

    Article  Google Scholar 

  89. Jamro R, Kardjilov N, HairieRabir M, Zain MRM, Mohamed AA, Ali NM, Idris F, Ahmad MHARM, Yazid K, Yazid H, Azman A, Mamat MR (2016) Monte Carlo simulation for designing collimator of the neutron radiography facility in Malaysia. In: 8th international topical meeting on neutron radiography, Beijing, vol 361–368. Physics Procedia. https://doi.org/10.1016/j.phpro.2017.06.049

  90. Mishra KK, Hawari AI, Gillette VH (2006) Design and performance of a thermal neutron imaging facility at the North Carolina State University PULSTAR reactor. IEEE Trans Nucl Sci 53(6):3904–3911. https://doi.org/10.1109/tns.2006.884323

    Article  Google Scholar 

  91. da Silva AX, Crispim VR (2001) Moderator–collimator-shielding design for neutron radiography systems using 252Cf. Appl Radiat Isot 54(2):217–225. https://doi.org/10.1016/s0969-8043(00)00291-8

    Article  Google Scholar 

  92. Jafari H, Feghhi SAH (2012) Design and simulation of neutron radiography system based on 241Am–Be source. Radiat Phys Chem 81(5):506–511. https://doi.org/10.1016/j.radphyschem.2011.12.027

    Article  Google Scholar 

  93. de Beer FC (2005) Characteristics of the neutron/X-ray tomography system at the SANRAD facility in South Africa. Nucl Instrum Methods Phys Res A 542:1–8. https://doi.org/10.1016/j.nima.2005.01.003

    Article  Google Scholar 

  94. Nshimirimana R, Abraham A, Nothnagel G, Engelbrecht A (2020) X-Ray and neutron radiography system optimization by means of a multiobjective approach and a simplified ray-tracing method. Nucl Technol. https://doi.org/10.1080/00295450.2020.1740562

    Article  Google Scholar 

  95. Grünauer F (2009) Monte Carlo simulations for the SAFARI reactor and its instruments: neutron radiography facility. NECSA, Pelindaba

    Google Scholar 

Download references

Acknowledgements

The author wishes to thank the financial support of the South African Nuclear Energy Corporation and the National Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Nshimirimana.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (ZIP 3680 kb)

Appendices

Appendix 1: NF-MOPSO algorithm

See Fig. 8.

Fig. 8
figure 8

NF-MOPSO algorithm

Appendix 2: Performance results of two objectives test functions

See Figs. 9, 10, 11, 12, 13, 14.

Fig. 9
figure 9

Graphical performance results for two objectives test functions of NF-MOPSO vs true

Fig. 10
figure 10

Graphical performance results for two objectives test functions of NF-MOPSO vs Theory

Fig. 11
figure 11

Graphical performance results for two objectives test functions of NF-MOPSO vs Theory

Fig. 12
figure 12

Graphical performance results for two objectives test functions of NF-MOPSO vs Theory

Fig. 13
figure 13

Graphical performance results for two objectives test functions of NF-MOPSO vs Theory

Fig. 14
figure 14

Graphical performance results for two objectives test functions of NF-MOPSO vs Theory

Appendix 3: Performance results of three objectives test functions

See Figs. 15, 16.

Fig. 15
figure 15

Graphical performance results for three objectives test functions of NF-MOPSO vs Theory

Fig. 16
figure 16

Graphical performance results for three objectives test functions of NF-MOPSO vs Theory

Appendix 4: Flowchart of collimator optimization

See Fig. 17.

Fig. 17
figure 17

Flowchart of collimator optimization

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nshimirimana, R., Abraham, A. & Nothnagel, G. A multi-objective particle swarm for constraint and unconstrained problems. Neural Comput & Applic 33, 11355–11385 (2021). https://doi.org/10.1007/s00521-020-05555-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-05555-6

Keywords

Navigation