Skip to main content
Log in

A novel meta-heuristic algorithm for solving numerical optimization problems: Ali Baba and the forty thieves

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper presents a novel meta-heuristic algorithm called Ali Baba and the forty thieves (AFT) for solving global optimization problems. Recall the famous tale of Ali Baba and the forty thieves, where Ali Baba once saw a gang of forty thieves enter a strange cave filled with all kinds of treasures. The strategies pursued by the forty thieves in the search for Ali Baba inspired us to design ideas and underlie the basic concepts to put forward the mathematical models and implement the exploration and exploitation processes of the proposed algorithm. The performance of the AFT algorithm was assessed on a set of basic benchmark test functions and two more challenging benchmarks called IEEE CEC-2017 and IEEE CEC-C06 2019 benchmark test functions. These benchmarks cover simple and complex test functions with various dimensions and levels of complexity. An extensive comparative study was performed between the AFT algorithm and other well-studied algorithms, and the significance of the results was proved by statistical test methods. To study the potential performance of AFT, its further development is discussed and carried out from five aspects. Finally, the applicability of the AFT algorithm was subsequently demonstrated in solving five engineering design problems. The results in both benchmark functions and engineering problems show that the AFT algorithm has stronger performance than other competitors’ algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Grossmann IE, Apap RM, Calfa BA, Garcia-Herreros P, Zhang Q (2017) Mathematical programming techniques for optimization under uncertainty and their application in process systems engineering. Theor Found Chem Eng 51(6):893–909

    Google Scholar 

  2. Rodríguez N, Gupta A, Zabala PL, Cabrera-Guerrero G (2018) Optimization algorithms combining (meta) heuristics and mathematical programming and its application in engineering. Math Probl Eng 2018:3967457. https://doi.org/10.1155/2018/3967457

    Article  Google Scholar 

  3. Harjunkoski I, Grossmann IE (2002) Decomposition techniques for multistage scheduling problems using mixed-integer and constraint programming methods. Comput Chem Eng 26(11):1533–1552

    Google Scholar 

  4. Chumburidze M, Basheleishvili I, Khetsuriani A (2019) Dynamic programming and greedy algorithm strategy for solving several classes of graph optimization problems. BRAIN. Broad Res Artif Intell Neurosci 10(1):101–107

    Google Scholar 

  5. Lan G (2020) First-order and stochastic optimization methods for machine learning. Springer, New York

    MATH  Google Scholar 

  6. Ommen T, Markussen WB, Elmegaard B (2014) Comparison of linear, mixed integer and non-linear programming methods in energy system dispatch modelling. Energy 74:109–118

    Google Scholar 

  7. Braik M, Alaa S, Al-Hiary H (2020) A novel meta-heuristic search algorithm for solving optimization problems: capuchin search algorithm. Neural Comput Appl 33(7):2515–2547

    Google Scholar 

  8. Braik MS (2021) Chameleon swarm algorithm: a bio-inspired optimizer for solving engineering design problems. Expert Syst Appl 174:114685

    Google Scholar 

  9. Mlinarić D, Perić T, Matejaš J (2019) Multi-objective programming methodology for solving economic diplomacy resource allocation problem. Croat Oper Res Rev 8:165–174

    MathSciNet  MATH  Google Scholar 

  10. Sheta A, Hossam F, Braik M, Mirjalili S (2020) Nature-inspired metaheuristics search algorithms for solving the economic load dispatch problem of power system: a comparison study. Applied nature-inspired computing: algorithms and case studies. Springer, New York, pp 199–230

    MATH  Google Scholar 

  11. Mirjalili S, Gandomi AH, Zahra MS, Saremi S, Faris H, Mirjalili MS (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Google Scholar 

  12. Sandgren E (1990) Nonlinear integer and discrete programming in mechanical design optimization 112(2):223–229

  13. Qi Y, Jin L, Wang Y, Xiao L, Zhang J (2019) Complex-valued discrete-time neural dynamics for perturbed time-dependent complex quadratic programming with applications. IEEE Trans Neural Netw Learn Syst 31(9):3555–3569

    MathSciNet  Google Scholar 

  14. Aktemur C, Gusseinov I (2017) A comparison of sequential quadratic programming, genetic algorithm, simulated annealing, particle swarm optimization and hybrid algorithm for the design and optimization of golinski’s speed reducer. Int J Energy Appl Technol 4(2):34–52

    Google Scholar 

  15. Akay B, Karaboga D (2012) Artificial bee colony algorithm for large-scale problems and engineering design optimization. J Intell Manuf 23(4):1001–1014

    Google Scholar 

  16. Garg H (2016) A hybrid pso-ga algorithm for constrained optimization problems. Appl Math Comput 274:292–305

    MathSciNet  MATH  Google Scholar 

  17. Nabil E (2016) A modified flower pollination algorithm for global optimization. Expert Syst Appl 57:192–203

    Google Scholar 

  18. Wang G-G (2018) Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memet Comput 10(2):151–164

    Google Scholar 

  19. Li X (2003) A new intelligent optimization method-artificial fish school algorithm. Doctor thesis of Zhejiang University

  20. Yang X-S (2012) Flower pollination algorithm for global optimization. International conference on unconventional computing and natural computation. Springer, New York, pp 240–249

    Google Scholar 

  21. Li MD, Zhao H, Weng XW, Han T (2016) A novel nature-inspired algorithm for optimization: virus colony search. Adv Eng Softw 92:65–88

    Google Scholar 

  22. Braik M, Sheta A (2011) Exploration of genetic algorithms and particle swarm optimization in improving the quality of medical images. In: Computational intelligence techniques in handling image processing and pattern recognition. Lambert Academic Publishing (LAP), Germany. pp 329–360

    Google Scholar 

  23. Arnay R, Fumero F, Sigut J (2017) Ant colony optimization-based method for optic cup segmentation in retinal images. Appl Soft Comput 52:409–417

    Google Scholar 

  24. Nguyen P, Kim J-M (2016) Adaptive ecg denoising using genetic algorithm-based thresholding and ensemble empirical mode decomposition. Inf Sci 373:499–511

    Google Scholar 

  25. Sheta A, Braik M, Al-Hiary H (2019) Modeling the tennessee eastman chemical process reactor using bio-inspired feedforward neural network (bi-ff-nn). Int J Adv Manuf Technol 103(1):1359–1380

    Google Scholar 

  26. Rashaideh H, Sawaie A, Al-Betar MA, Abualigah LM, Al-Laham MM, Ra’ed M, Braik M (2020) A grey wolf optimizer for text document clustering. J Intell Syst 29(1):814–830

    Google Scholar 

  27. Devi SG, Sabrigiriraj M (2019) A hybrid multi-objective firefly and simulated annealing based algorithm for big data classification. Concurr Comput Pract Exp 31(14):e4985

    Google Scholar 

  28. Mosavi MR, Khishe M, Naseri MJ, Parvizi GR, Mehdi AYAT (2019) Multi-layer perceptron neural network utilizing adaptive best-mass gravitational search algorithm to classify sonar dataset. Arch Acoust 44(1):137–151

    Google Scholar 

  29. Zaidan AA, Atiya B, Abu Bakar MR, Zaidan BB (2019) A new hybrid algorithm of simulated annealing and simplex downhill for solving multiple-objective aggregate production planning on fuzzy environment. Neural Comput Appl 31(6):1823–1834

    Google Scholar 

  30. Koppen M, Wolpert DH, Macready WG (2001) Remarks on a recent paper on the" no free lunch" theorems. IEEE Trans Evolut Comput 5(3):295–296

    Google Scholar 

  31. Wolpert David H, Macready William G (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Google Scholar 

  32. Yong W, Tao W, Cheng-Zhi Z, Hua-Juan H (2016) A new stochastic optimization approach-dolphin swarm optimization algorithm. Int J Comput Intell Appl 15(02):1650011

    Google Scholar 

  33. Boussaïd I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics. Inf Sci 237:82–117

    MathSciNet  MATH  Google Scholar 

  34. Coello Coello Carlos A (2000) Constraint-handling using an evolutionary multiobjective optimization technique. Civ Eng Syst 17(4):319–346

    Google Scholar 

  35. Glover F (1989) Tabu search-part i. ORSA J Comput 1(3):190–206

    MATH  Google Scholar 

  36. Davis L (1991) Bit-climbing, representational bias, and test suit design. Proc Intl Conf Genet Algorithm 1991:18–23

    Google Scholar 

  37. Lourenço HR, Martin OC, Stützle T (2003) Iterated local search. Handbook of metaheuristics. Springer, New York, pp 320–353

    Google Scholar 

  38. Morales-Castañeda B, Zaldivar D, Cuevas E, Fausto F, Rodríguez A (2020) A better balance in metaheuristic algorithms: does it exist? Swarm Evol Comput 54:100671

    Google Scholar 

  39. Yang X-S, Deb S, Fong S (2014) Metaheuristic algorithms: optimal balance of intensification and diversification. Appl Math Inf Sci 8(3):977

    Google Scholar 

  40. Yang X-S, Deb S, Hanne T, Xingshi H (2019) Attraction and diffusion in nature-inspired optimization algorithms. Neural Comput Appl 31(7):1987–1994

    Google Scholar 

  41. Yazdani M, Jolai F (2016) Lion optimization algorithm (loa): a nature-inspired metaheuristic algorithm. J Comput Des Eng 3(1):24–36

    Google Scholar 

  42. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    MathSciNet  MATH  Google Scholar 

  43. Černỳ V (1985) Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J Optim Theory Appl 45(1):41–51

    MathSciNet  MATH  Google Scholar 

  44. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) Gsa: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    MATH  Google Scholar 

  45. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513

    Google Scholar 

  46. Hashim FA, Houssein EH, Mabrouk MS, Al-Atabany W, Mirjalili S (2019) Henry gas solubility optimization: a novel physics-based algorithm. Future Gener Comput Syst 101:646–667

    Google Scholar 

  47. Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2020) Equilibrium optimizer: a novel optimization algorithm. Knowl Based Syst 191:105190

    Google Scholar 

  48. Rechenberg I (1973) Evolution strategy: optimization of technical systems by means of biological evolution. Fromman-Holzboog Stuttg 104:15–16

    Google Scholar 

  49. Goldberg David E, Holland John H (1988) Genetic algorithms and machine learning. Mach Learn 3(2):95–99

    Google Scholar 

  50. Holland John H (1992) Genetic algorithms. Sci Am 267(1):66–73

    Google Scholar 

  51. Koza John R, Koza John R (1992) Genetic programming: on the programming of computers by means of natural selection, vol 1. MIT press, Cambridge

    MATH  Google Scholar 

  52. Das S, Suganthan PN (2011) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput 15(1):4–31

    Google Scholar 

  53. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Micro Machine and Human Science, 1995. MHS’95., Proceedings of the Sixth International Symposium on, pages 39–43. IEEE

  54. Colorni A, Dorigo M, Maniezzo V, et al. (1992) Distributed optimization by ant colonies. In: Proceedings of the first European conference on artificial life, volume 142, pages 134–142. Cambridge, MA

  55. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471

    MathSciNet  MATH  Google Scholar 

  56. Saremi S, Mirjalili SZ, Mirjalili SM (2015) Evolutionary population dynamics and grey wolf optimizer. Neural Comput Appl 26(5):1257–1263

    Google Scholar 

  57. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073

    MathSciNet  Google Scholar 

  58. Braik M, Sheta A, Turabieh H, Alhiary H (2020) A novel lifetime scheme for enhancing the convergence performance of salp swarm algorithm. Soft Comput 25(1):181–206

    Google Scholar 

  59. García-Hernández L, Salas-Morera L, Carmona-Muñoz C, Garcia-Hernandez JA, Salcedo-Sanz S (2020) A novel island model based on coral reefs optimization algorithm for solving the unequal area facility layout problem. Eng Appl Artif Intell 89:103445

    Google Scholar 

  60. Fausto F, Reyna-Orta A, Cuevas E, Andrade ÁG, Perez-Cisneros M (2020) From ants to whales: metaheuristics for all tastes. Artif Intell Rev 53(1):753–810

    Google Scholar 

  61. Loganathan GV, Geem ZW, Kim JH (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68

    Google Scholar 

  62. Chen W, Dai C, Zhu Y (2006) Seeker optimization algorithm. In: International Conference on Computational and Information Science, pages 167–176. Springer

  63. Zhu Y, Tan Y (2010) Fireworks algorithm for optimization. In: International conference in swarm intelligence, pages 355–364. Springer

  64. Lotfi S, Ramezani F (2013) Social-based algorithm (sba). Appl Soft Comput 13(5):2837–2856

    Google Scholar 

  65. Gandomi AH (2014) Interior search algorithm (isa): a novel approach for global optimization. ISA Trans 53(4):1168–1183

    Google Scholar 

  66. Ebrahimi M, Fadakar E (2016) A new metaheuristic football game inspired algorithm. In: 2016 1st conference on swarm intelligence and evolutionary computation (CSIEC), pages 6–11. IEEE

  67. Great books online, Accessed from 17 Oct 2020. https://www.bartleby.com/16/905.html

  68. Mansour W et al (2008) “Ali baba and the forty thieves”: an allusion to abbasid organised crime. Glob Crime 9(1):8

    Google Scholar 

  69. Ma’ruf K (2015) An analysis of diction used in the story ”Ali Baba and the forty thieves” from the arabian nights written by Richard Burton and written by Marie P. Croall. PhD thesis, IAIN Syekh Nurjati Cirebon, 2015

  70. Lei Z, Gao S, Gupta S, Cheng J, Yang G (2020) An aggregative learning gravitational search algorithm with self-adaptive gravitational constants. Expert Syst Appl 152:113396

    Google Scholar 

  71. Wang Y, Yu Y, Gao S, Pan H, Yang G (2019) A hierarchical gravitational search algorithm with an effective gravitational constant. Swarm Evol Comput 46:118–139

    Google Scholar 

  72. Wang Y, Gao S, Zhou M, Yu Y (2020) A multi-layered gravitational search algorithm for function optimization and real-world problems. IEEE/CAA J Autom Sin 8(1):94–109

    Google Scholar 

  73. Cheng S, Shi Y, Qin Q, Zhang Q, Bai R (2014) Population diversity maintenance in brain storm optimization algorithm. J Artif Intell Soft Comput Res 4(2):83–97

    Google Scholar 

  74. Gao S, Yu Y, Wang Y, Wang J, Cheng J, Zhou M (2019) Chaotic local search-based differential evolution algorithms for optimization. IEEE Trans Syst Man Cybern Syst 51(6):3954–39671

    Google Scholar 

  75. Wang Y, Gao S, Yu Y, Wang Z, Cheng J, Yuki T (2020) A gravitational search algorithm with chaotic neural oscillators. IEEE Access 8:25938–25948

    Google Scholar 

  76. Jordehi AR (2015) A chaotic artificial immune system optimisation algorithm for solving global continuous optimisation problems. Neural Comput Appl 26(4):827–833

    Google Scholar 

  77. Bharti KK, Singh PK (2016) Opposition chaotic fitness mutation based adaptive inertia weight bpso for feature selection in text clustering. Appl Soft Comput 43:20–34

    Google Scholar 

  78. dos Santos Coelho L, Ayala HVH, Mariani VC (2014) A self-adaptive chaotic differential evolution algorithm using gamma distribution for unconstrained global optimization. Appl Math Comput 234:452–459

    MathSciNet  MATH  Google Scholar 

  79. Liu B, Wang L, Jin Y-H, Tang F, Huang D-X (2005) Improved particle swarm optimization combined with chaos. Chaos Solitons Fractals 25(5):1261–1271

    MATH  Google Scholar 

  80. Jia D, Zheng G, Khan MK (2011) An effective memetic differential evolution algorithm based on chaotic local search. Inf Sci 181(15):3175–3187

    Google Scholar 

  81. Gao S, Vairappan C, Wang Y, Cao Q, Tang Z (2014) Gravitational search algorithm combined with chaos for unconstrained numerical optimization. Appl Math Comput 231:48–62

    MathSciNet  MATH  Google Scholar 

  82. Cheng S, Shi Y, Qin Q, Gao S (2013) Solution clustering analysis in brain storm optimization algorithm. In: 2013 IEEE Symposium on Swarm Intelligence (SIS), pages 111–118. IEEE

  83. Gao S, Wang Y, Wang J, Cheng JJ (2017) Understanding differential evolution: a poisson law derived from population interaction network. J Comput Sci 21:140–149

    Google Scholar 

  84. Wang Y, Gao S, Yu Y, Xu Z (2019) The discovery of population interaction with a power law distribution in brain storm optimization. Memet Comput 11(1):65–87

    Google Scholar 

  85. Kennedy J, Eberhart R (1995) Particle swarm optimization (pso). In: Proc. IEEE International Conference on Neural Networks, Perth, Australia, pages 1942–1948

  86. Yan J, He W, Jiang X, Zhang Z (2017) A novel phase performance evaluation method for particle swarm optimization algorithms using velocity-based state estimation. Appl Soft Comput 57:517–525

    Google Scholar 

  87. Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    MathSciNet  MATH  Google Scholar 

  88. Holland JH et al (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press, New York

    Google Scholar 

  89. Song Y, Wang F, Chen X (2019) An improved genetic algorithm for numerical function optimization. Appl Intell 49(5):1880–1902

    Google Scholar 

  90. Hansen N, Ostermeier A (1997) Convergence properties of evolution strategies with the derandomized covariance matrix adaptation: the (/i,)-es. Eufit 97:650–654

    Google Scholar 

  91. Hansen N, Ostermeier A (2001) Completely derandomized self-adaptation in evolution strategies. Evol Comput 9(2):159–195

    Google Scholar 

  92. Dorigo M, Blum C (2005) Ant colony optimization theory: a survey. Theor Comput Sci 344(2–3):243–278

    MathSciNet  MATH  Google Scholar 

  93. Sayed GI, Hassanien AE, Azar AT (2019) Feature selection via a novel chaotic crow search algorithm. Neural Comput Appl 31(1):171–188

    Google Scholar 

  94. Civicioglu P, Besdok E (2013) A conceptual comparison of the cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms. Artif Intell Rev 39(4):315–346

    Google Scholar 

  95. Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102

    Google Scholar 

  96. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249

    Google Scholar 

  97. Dhiman G, Kumar V (2019) Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems. Knowl-Based Syst 165:169–196

    Google Scholar 

  98. Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12

    Google Scholar 

  99. Dhiman G, Kumar V (2017) Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv Eng Softw 114:48–70

    Google Scholar 

  100. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Google Scholar 

  101. Mirjalili S (2016) Sca: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133

    Google Scholar 

  102. Bonabeau E, Marco DRDF, Dorigo M, Theraulaz G et al (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, Oxford

    MATH  Google Scholar 

  103. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Google Scholar 

  104. Zhenyu G, Bo C, Min Y, Binggang CD (2006) Self-adaptive chaos differential evolution. In: International Conference on Natural Computation, pages 972–975. Springer

  105. Li-Jiang Y, Tian-Lun C (2002) Application of chaos in genetic algorithms. Commun Theor Phys 38(2):168

    Google Scholar 

  106. Saremi S, Mirjalili SM, Mirjalili Si (2014) Chaotic krill herd optimization algorithm. Procedia Technol 12:180–185

    Google Scholar 

  107. Awad Noor H, Ali Mostafa Z, Suganthan Ponnuthurai N, Reynolds Robert G (2017) Cade: a hybridization of cultural algorithm and differential evolution for numerical optimization. Inf Sci 378:215–241

    Google Scholar 

  108. Price KV, Awad NH, Ali MZ, Suganthan PN (2018) The 100-digit challenge: Problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization. Nanyang Technological University

  109. Abdullah JM, Ahmed T (2019) Fitness dependent optimizer: inspired by the bee swarming reproductive process. IEEE Access 7:43473–43486

    Google Scholar 

  110. Pereira DG, Afonso A, Medeiros FM (2015) Overview of friedman’s test and post-hoc analysis. Commun Stat Simul Comput 44(10):2636–2653

    MathSciNet  MATH  Google Scholar 

  111. Wang G-G, Guo L, Gandomi AH, Hao G-S, Wang H (2014) Chaotic krill herd algorithm. Inf Sci 274:17–34

    MathSciNet  Google Scholar 

  112. Arora JS (2004) Optimum design concepts: optimality conditions. Introd Optim Des

  113. Gandomi AH, Yang XS (2011) Benchmark problems in structural optimization. Computational optimization, methods and algorithms. Springer, New York, pp 259–281

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malik Braik.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Unimodal, multimodal and fixed-dimension multimodal functions

A detailed description of the unimodal benchmark functions (\(\hbox {F}_1\)\(\hbox {F}_7\)), multimodal benchmark functions (\(\hbox {F}_8\)\(\hbox {F}_{{13}}\)) and fixed-dimension multimodal benchmark functions (\(\hbox {F}_{{14}}\)\(\hbox {F}_{{23}}\)) is tabulated in Table 33.

Table 33 Characteristics of the unimodal, multimodal and fixed-dimension multimodal functions used in this work

Appendix B. IEEE CEC-2017 test suite

A description of the IEEE CEC-2017 benchmark test functions is shown in Table 34.

Table 34 Characteristics of the IEEE CEC-2017 benchmark test functions

Appendix C. IEEE CEC-C06 2019 benchmark test functions

A description of the IEEE CEC-C06 2019 benchmark functions is given in Table 35.

Table 35 Characteristics of the IEEE CEC-C06 2019 benchmark functions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braik, M., Ryalat, M.H. & Al-Zoubi, H. A novel meta-heuristic algorithm for solving numerical optimization problems: Ali Baba and the forty thieves. Neural Comput & Applic 34, 409–455 (2022). https://doi.org/10.1007/s00521-021-06392-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06392-x

Keywords

Navigation