Skip to main content
Log in

Solutions with multiple spike patterns for an elliptic system

  • Original Article
  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider a system of the form \(- \varepsilon^2 \Delta u + V(x)u=g(v)\) , \(-\varepsilon^2 \Delta v + V(x)v=f(u)\) in an open domain \(\Omega\) of \( {\mathbb{R}}^N\) , with Dirichlet conditions at the boundary (if any). We suppose that f and g are power-type non-linearities, having superlinear and subcritical growth at infinity. We prove the existence of positive solutions \(u_{\varepsilon}\) and \(v_{\varepsilon} \) which concentrate, as \(\varepsilon\to 0\) , at a prescribed finite number of local minimum points of V(x), possibly degenerate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves C.O., Soares S.H.M. (2006). Singularly perturbed elliptic systems. J. Nonlinear Analysis 64: 109–129

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambrosetti A., Badiale M., Cingolani S. (1997). Semiclassical states of nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 140: 285–300

    Article  MATH  MathSciNet  Google Scholar 

  3. Ávila A.I., Yang J. (2003). On the existence and shape of least energy solutions for some elliptic systems. J. Differential Equations 191: 348–376

    Article  MATH  MathSciNet  Google Scholar 

  4. Busca J., Sirakov B. (2000). Symmetry results for semilinear elliptic systems in the whole space. J. Differential Equations 163: 41–56

    Article  MATH  MathSciNet  Google Scholar 

  5. Byeon J., Wang Z.Q. (2002). Standing waves with a critical frequency for nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 165: 295–316

    Article  MATH  MathSciNet  Google Scholar 

  6. Cao D., Noussair E.S. (2000). Multi-peak solutions for a singularly perturbed semilinear elliptic problem. J.Differential Equations 166: 266–289

    Article  MATH  MathSciNet  Google Scholar 

  7. Coti Zelati V., Rabinowitz P. (1992). Homoclinic type solutions for semilinear elliptic PDE on \({\mathbb{R}}^N\). Comm. Pure Appl. Math. XLV: 1217–1269

    MathSciNet  Google Scholar 

  8. Dancer E.N., Wei J. (1999). On the location of spikes of solutions with two sharp layers for a singularly perturbed semillinear Dirichlet problem. J. Differential Equations 157: 82–101

    Article  MATH  MathSciNet  Google Scholar 

  9. Dancer E.N., Yan S. (1999). Multipeak solutions for a singularly perturbed Neumann problem. Pac. J. Math. 189: 241–262

    Article  MATH  MathSciNet  Google Scholar 

  10. D’Aprile T., Wei J. (2006). Locating the boundary peaks of least-energy solutions to a singularly perturbed Dirichlet problem. Ann. Sc. Norm. Super. Pisa 5: 219–259

    MATH  MathSciNet  Google Scholar 

  11. Del Pino M., Felmer P. (1996). Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differential Equations 4: 121–137

    Article  MATH  MathSciNet  Google Scholar 

  12. Del Pino M., Felmer P. (1999). Spike-layered solutions of singularly perturbed semilinear elliptic problems in a degenerate setting. Indiana Univ. Math. J. 48: 883–898

    Article  MATH  MathSciNet  Google Scholar 

  13. Del Pino M., Felmer P. (1998). Multi-peak bound states for nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 15: 127–149

    Article  MATH  MathSciNet  Google Scholar 

  14. Del Pino M., Felmer P. (1997). Semi-classical states for nonlinear Schrödinger equations. J. Funct. Anal. 149: 245–265

    Article  MATH  MathSciNet  Google Scholar 

  15. Del Pino M., Felmer P. (2002). Semi-classical states of nonlinear Schrödinger equations: a variational reduction method. Math. Ann. 324: 1–32

    Article  MATH  MathSciNet  Google Scholar 

  16. Floer A., Weinstein A. (1986). Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69: 397–408

    Article  MATH  MathSciNet  Google Scholar 

  17. Kavian O. (1993). Introduction à la théorie des points critiques et applications aux problèmes elliptiques. Springer, Heidelberg

    MATH  Google Scholar 

  18. Li Y.Y., Nirenberg L. (1998). The Dirichlet problem for singularly perturbed elliptic equations. Commun. Pure Appl. Math. 51: 1445–1490

    Article  MATH  MathSciNet  Google Scholar 

  19. Ni W.M., yTakagi I. (1993). Locating peaks of least- energy solutions to a semilinear Neumann problem. Duke Math. J. 70: 247–281

    Article  MATH  MathSciNet  Google Scholar 

  20. Ni W.M., Wei J. (1995). On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems. Commun. Pure Appl. Math. 48: 731–768

    Article  MATH  MathSciNet  Google Scholar 

  21. Oh Y.J. (1990). On positive multi-bump bound states of nonlinear Schrödinger equations under multiple well potential. Commun. Math. Phys. 131: 223–253

    Article  MATH  Google Scholar 

  22. Pistoia A., Ramos M. (2004). Locating the peaks of the least energy solutions to an elliptic system with Neumann boundary conditions. J. Differential Equations 201: 160–176

    Article  MATH  MathSciNet  Google Scholar 

  23. Pistoia, A., Ramos, M.: Spike-layered solutions of singularly perturbed elliptic systems. NoDEA Nonlinear Differential Equations Appl (in press) (2007)

  24. Rabinowitz P.H. (1992). On a class of nonlinear Schr ödinger equations. Z. Angew Math. Phys. 43: 270–291

    Article  MATH  MathSciNet  Google Scholar 

  25. Ramos M., Soares S. (2006). On the concentration of solutions of singularly perturbed Hamiltonian systems in \({\mathbb{R}}^N\). Port. Math. 63: 157–171

    MATH  MathSciNet  Google Scholar 

  26. Ramos M., Yang J. (2005). Spike-layered solutions for an elliptic system with Neumann boundary conditions. Trans. Am. Math. Soc. 357: 3265–3284

    Article  MATH  MathSciNet  Google Scholar 

  27. Sirakov B. (2000). On the existence of solutions of Hamiltonian elliptic systems in \({\mathbb{R}}^N\) Adv. Differential Equations 357: 1445–1464

    MathSciNet  Google Scholar 

  28. Szulkin A. (1988). Ljusternik-Schnirelmann theory in C 1-manifolds. Ann. Inst. H. Poincaré Anal. Non Lin éaire 5: 119–139

    MATH  MathSciNet  Google Scholar 

  29. Wang X (1993). On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 153: 229–244

    Article  MATH  Google Scholar 

  30. Willem M. (1996) Minimax theorems. Birkhäuser

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Ramos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramos, M., Tavares, H. Solutions with multiple spike patterns for an elliptic system. Calc. Var. 31, 1–25 (2008). https://doi.org/10.1007/s00526-007-0103-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-007-0103-z

Mathematics Subject Classification (2000)

Navigation