Skip to main content
Log in

Regularity of the nodal set of segregated critical configurations under a weak reflection law

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We deal with a class of Lipschitz vector functions U = (u 1, . . . , u h ) whose components are nonnegative, disjointly supported and verify an elliptic equation on each support. Under a weak formulation of a reflection law, related to the Pohoz̆aev identity, we prove that the nodal set is a collection of C 1,α hyper-surfaces (for every 0 < α < 1), up to a residual set with small Hausdorff dimension. This result applies to the asymptotic limits of reaction–diffusion systems with strong competition interactions, to optimal partition problems involving eigenvalues, as well as to segregated standing waves for Bose–Einstein condensates in multiple hyperfine spin states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alt H.W., Caffarelli L.A.: Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325, 105–144 (1981)

    MathSciNet  MATH  Google Scholar 

  2. Bucur D., Buttazzo G.: Variational Methods in Shape Optimization Problems. Progress in Nonlinear Differential Equations and Their Applications. Vol. 65. Birkhuser Boston, Inc., Boston (2005)

    Google Scholar 

  3. Caffarelli L.A.: A Harnack inequality approach to the regularity of free boundaries. II. Flat free boundaries are Lipschitz. Commun. Pure Appl. Math. 42(1), 55–78 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Caffarelli L.A., Friedman A.: Partial regularity of the zero-set of solutions of linear and superlinear elliptic equations. J. Differ. Equ. 60, 420–433 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caffarelli L.A., Lin F.-H.: An optimal partition problem for eigenvalues. J. Sci. Comput. 31(1/2), 5–18 (2007)

    Article  MathSciNet  Google Scholar 

  6. Caffarelli L.A., Lin F.-H.: Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries. J. Am. Math. Soc. 21(3), 847–862 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caffarelli L.A., Karakhanyan A.L., Lin F.-H.: The geometry of solutions to a segregation problem for nondivergence systems. J. Fixed Point Theory Appl. 5(2), 353–395 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chang S.M., Lin C.S., Lin T.C., Lin W.W.: Segregated nodal domains of two-dimensional multispecies Bose–Einstein condensates. Phys. D 196, 341–361 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen X.-Y.: A strong unique continuation theorem for parabolic equation. Math. Ann. 311(4), 603–630 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen X.-Y.: On the scaling limits at zeros of solutions of parabolic equations. J. Differ. Equ. 147(2), 355–382 (1998)

    Article  MATH  Google Scholar 

  11. Conti M., Terracini S., Verzini G.: An optimal partition problem related to nonlinear eigenvalues. J. Funct. Anal. 198, 160–196 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Conti M., Terracini S., Verzini G.: A variational problem for the spatial segregation of reaction–diffusion systems. Indiana Univ. Math. J. 54(3), 779–815 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Conti M., Terracini S., Verzini G.: On a class of optimal partition problems related to the Fucik spectrum and to the monotonicity formula. Calc. Var. Partial Differ. Equ. 22, 45–72 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Conti M., Terracini S., Verzini G.: Asymptotic estimates for the spatial segregation of reaction–diffusion systems. Adv. Math. 195(2), 524–560 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dancer W., Wei J., Weth T.: A priori bounds versus multiple existence of positive solutions for a nonlinear Schrdinger system. Ann. Inst. H. Poincaré Anal. Non Linéaire 27, 953–969 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Evans L., Gariepy R.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

    Google Scholar 

  17. Garofalo N., Lin F.-H.: Monotonicity properties of variational integrals, A p weights and unique continuation. Indiana Univ. Math. J. 35(2), 245–268 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gilbarg, D., Trudinger, N.: Elliptic partial differential equations of second order. In: Grundlehren der Mathmatischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, 2nd edn. Springer, Berlin (1983)

  19. Han Q., Hardt R., Lin F.-H.: Geometric measure of singular sets of elliptic equations. Commun. Pure Appl. Math. 51, 1425–1443 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hardt R., Hoffmann-Ostenhof M., Hoffmann-Ostenhof T., Nadirashvili N.: Critical sets of solutions to elliptic equations. J. Differ. Geom. 51, 359–373 (1999)

    MathSciNet  MATH  Google Scholar 

  21. Hartman P., Wintner A.: On the local behavior of solutions of non-parabolic partial differential equations. III Approximations by spherical harmonics. Am. J. Math. 77, 453–474 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  22. Helffer B., Hoffmann-Ostenhof T., Terracini S.: Nodal domains and spectral minimal partitions. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 101–138 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Helffer, B., Hoffmann-Ostenhof, T., Terracini, S.: On spectral minimal partitions: the case of the sphere. In: Laptev, A. (ed.) Around the Research of Vladimir Mazya III. Analysis and Applications. International Mathematical Series, vol. 13, pp. 153–178. Springer (2010)

  24. Hong G., Wang L.: A geometric approach to the topological disk theorem of Reifenberg. Pac. J Math. 233(2), 321–339 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jerison D.S., Kenig C.E.: Boundary behavior of harmonic functions in nontangentially accessible domains. Adv. Math. 46(1), 80–147 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kenig C.E., Toro T.: Harmonic measure on locally flat domains. Duke Math. J. 87(3), 509–551 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lin F.: Nodal sets of solutions of elliptic and parabolic equations. Commun. Pure Appl. Math. 44(3), 287–308 (1991)

    Article  MATH  Google Scholar 

  28. Noris B., Ramos M.: Existence and bounds of positive solutions for a nonlinear Schrödinger system. Proc. AMS 138, 1681–1692 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Noris B., Tavares H., Terracini S., Verzini G.: Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition. Commun. Pure Appl. Math. 63(3), 267–302 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Noris, B., Tavares, H., Terracini, S., Verzini, G.: Convergence of minimax and continuation of critical points for singularly perturbed systems. J. Eur. Math. Soc. (to appear)

  31. Simon, L.: Lectures on Geometric Measure Theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3. Australian National University, Centre for Mathematical Analysis, Camberra (1983)

  32. Struwe M.: Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer, New York (1996)

    MATH  Google Scholar 

  33. Wang K., Zhang Z.: Some new results in competing systems with many species. Ann. Inst. H. Poincaré Anal. Non Linéaire 27, 739–761 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanna Terracini.

Additional information

Communicated by A. Malchiodi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tavares, H., Terracini, S. Regularity of the nodal set of segregated critical configurations under a weak reflection law. Calc. Var. 45, 273–317 (2012). https://doi.org/10.1007/s00526-011-0458-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-011-0458-z

Mathematics Subject Classification (2000)

Navigation