Skip to main content
Log in

Curvature bounds for configuration spaces

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We show that the configuration space \(\Upsilon \) over a manifold \(M\) inherits many curvature properties of the manifold. For instance, we show that a lower Ricci curvature bound on \(M\) implies a lower Ricci curvature bound on \(\Upsilon \) in the sense of Lott–Sturm–Villani, the Bochner inequality, gradient estimates and Wasserstein contraction. Moreover, we show that the heat flow on \(\Upsilon \) can be identified as the gradient flow of the entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The results also hold in the case that \(M\) is compact. However, they can be derived much easier.

References

  1. Albeverio, S., Kondratiev, Y.G., Röckner, M.: Analysis and geometry on configuration spaces. J. Funct. Anal. 154(2), 444–500 (1998)

  2. Albeverio, S., Kondratiev, Y.G., Röckner, M.: Analysis and geometry on configuration spaces: the Gibbsian case. J. Funct. Anal. 157(1), 242–291 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich, 2nd edn. Birkhäuser Verlag, Basel (2008)

    MATH  Google Scholar 

  4. Ambrosio, L., Gigli, N., Savaré, G.: Metric measure spaces with Riemannian Ricci curvature bounded from below. Preprint at arXiv:1109.0222 (2011)

  5. Ambrosio, L., Gigli, N., Savaré, G.: Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds. Preprint at arXiv:1209.5786 (2012)

  6. Ambrosio, L., Gigli, N., Savaré, G.: Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent. Math. 195(2), 289–391 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bakry, D., Émery, M.: Diffusions hypercontractives. In Séminaire de probabilités, XIX, 1983/84, volume 1123 of Lecture Notes in Math., pp. 177–206. Springer, Berlin (1985)

  8. Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry, volume 33. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  9. Chodosh, O.: A lack of Ricci bounds for the entropic measure on Wasserstein space over the interval. J. Funct. Anal. 262(10), 4570–4581 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cordero-Erausquin, D., McCann, R.J., Schmuckenschläger, M.: A Riemannian interpolation inequality à la Borell Brascamp and Lieb. Invent. Math. 146(2), 219–257 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Daneri, S., Savaré, G.: Eulerian calculus for the displacement convexity in the Wasserstein distance. SIAM J. Math. Anal. 40(3), 1104–1122 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Decreusefond, L.: Wasserstein distance on configuration space. Potential Anal. 28(3), 283–300 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Deng, C.-S.: Harnack inequality on configuration spaces: the coupling approach and a unified treatment. Stoch. Process. Appl. 124(1), 220–234 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Erbar, M., Kuwada, K., Sturm, K.-T.: On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces. arXiv preprint arXiv:1303.4382 (2013)

  15. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kallenberg, O.: Foundations of Modern Probability. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  17. Kellerer, H.G.: Duality theorems for marginal problems. Z. Wahrsch. Verw. Gebiete 67(4), 399–432 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kendall, D.G.: On infinite doubly-stochastic matrices and Birkhoff’s problem 111. J. Lond. Math. Soc. 35, 81–84 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kondratiev, Y.G., Lytvynov, E., Röckner, M.: Non-equilibrium stochastic dynamics in continuum: the free case. Condens. Matter Phys. 11(4), 701–721 (2008)

    Article  Google Scholar 

  20. LaFontaine, J., Katz, M., Gromov, M., Bates, S.M., Pansu, P., Semmes, S.: Metric Structures for Riemannian and Non-Riemannian Spaces. Springer, Berlin (2007)

    Google Scholar 

  21. Lebedeva, N., Petrunin, A.: Curvature bounded below: a definition a la Berg-Nikolaev. Electron. Res. Announc. Math. Sci. 17, 122–124 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Lisini, S.: Absolutely continuous curves in extended Wasserstein-Orlicz spaces. arXiv preprint arXiv:1402.7328 (2014)

  23. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. (2) 163(3), 903–991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Naber, A.: Characterizations of bounded Ricci curvature on smooth and nonsmooth spaces. arXiv preprint arXiv:1306.6512 (2013)

  25. Osada, H.: Infinite-dimensional stochastic differential equations related to random matrices. Probab. Theory Relat. Fields 153(3–4), 471–509 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Osada, H.: Interacting Brownian motions in infinite dimensions with logarithmic interaction potentials. Ann. Probab. 41(1), 1–49 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Otto, F., Westdickenberg, M.: Eulerian calculus for the contraction in the Wasserstein distance. SIAM J. Math. Anal. 37(4), 1227–1255 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Privault, N.: Connections and curvature in the Riemannian geometry of configuration spaces. J. Funct. Anal. 185(2), 367–403 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Röckner, M., Schied, A.: Rademacher’s theorem on configuration spaces and applications. J. Funct. Anal. 169(2), 325–356 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Srivastava, S.M.: A Course on Borel Sets, Volume 180. Springer, Berlin (1998)

    Book  Google Scholar 

  31. Stroock, D.W.: An Introduction to the Analysis of Paths on a Riemannian Manifold, Volume 74 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (2000)

    Google Scholar 

  32. Sturm, K.-T.: Metric spaces of lower bounded curvature. Expo. Math. 17(1), 35–47 (1999)

    MathSciNet  MATH  Google Scholar 

  33. Sturm, K.T.: On the geometry of metric measure spaces.I. Acta Math. 196(1), 65–131 (2006)

    Article  MathSciNet  Google Scholar 

  34. von Renesse, M.-K., Sturm, K.-T.: Transport inequalities, gradient estimates, entropy, and Ricci curvature. Comm. Pure Appl. Math. 58(7), 923–940 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Theo Sturm and Fabio Cavalletti for several fruitful discussions on the subject of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Erbar.

Additional information

Communicated by L. Ambrosio.

This material is based upon work supported by the National Science Foundation under Grant No. 0932078 000, while both authors were in residence at the Mathematical Sciences Research Institute in Berkeley, California, in the fall of 2013. M.E. gratefully acknowledges funding from the European Research Council under the European Communitys Seventh Framework Programme (FP7/2007-2013) / ERC Grant agreement GeMeThnES No. 246923; M.H. from the CRC 1060.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erbar, M., Huesmann, M. Curvature bounds for configuration spaces. Calc. Var. 54, 397–430 (2015). https://doi.org/10.1007/s00526-014-0790-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-014-0790-1

Navigation