Skip to main content
Log in

Fractional Sobolev metrics on spaces of immersed curves

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Motivated by applications in the field of shape analysis, we study reparametrization invariant, fractional order Sobolev-type metrics on the space of smooth regular curves \(\mathrm {Imm}(\mathrm {S}^{1},\mathbb {R}^d)\) and on its Sobolev completions \({\mathcal {I}}^{q}(\mathrm {S}^{1},{\mathbb {R}}^{d})\). We prove local well-posedness of the geodesic equations both on the Banach manifold \({\mathcal {I}}^{q}(\mathrm {S}^{1},{\mathbb {R}}^{d})\) and on the Fréchet-manifold \(\mathrm {Imm}(\mathrm {S}^{1},\mathbb {R}^d)\) provided the order of the metric is greater or equal to one. In addition we show that the \(H^s\)-metric induces a strong Riemannian metric on the Banach manifold \({\mathcal {I}}^{s}(\mathrm {S}^{1},{\mathbb {R}}^{d})\) of the same order s, provided \(s>\frac{3}{2}\). These investigations can be also interpreted as a generalization of the analysis for right invariant metrics on the diffeomorphism group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. This is equivalent to requiring that the map \(\mathbb {R}^+ \times C^\infty (\mathrm {S}^{1},\mathbb {R}^d) \rightarrow C^\infty (\mathrm {S}^{1},\mathbb {R}^d)\) given by \((\lambda , h) \mapsto A(\lambda ) h\) is smooth.

  2. When EF are Fréchet spaces or more generally convenient vector spaces, \(\mathcal L(E,F)\) is the space of bounded linear maps equipped with the topology of uniform convergence on bounded sets; see [25, 5.3] for details.

References

  1. Bauer, M., Bruveris, M., Harms, P., Michor, P.W.: Vanishing geodesic distance for the Riemannian metric with geodesic equation the KdV-equation. Ann. Glob. Anal. Geom. 41(4), 461–472 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bauer, M., Bruveris, M., Harms, P., Møller-Andersen, J.: A numerical framework for Sobolev metrics on the space of curves. SIAM J. Imaging Sci. 10(1), 47–73 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bauer, M., Bruveris, M., Michor, P.W.: Overview of the geometries of shape spaces and diffeomorphism groups. J. Math. Imaging Vis. 50(1–2), 60–97 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauer, M., Bruveris, M., Michor, P.W.: Why use Sobolev metrics on the space of curves. In: Turaga, P., Srivastava, A. (eds.) Riemannian Computing in Computer Vision, pp. 233–255. Springer, Cham (2016)

    Chapter  Google Scholar 

  5. Bauer, M., Escher, J., Kolev, B.: Local and global well-posedness of the fractional order EPDiff equation on \(\mathbb{R}^d\). J. Differ. Equ. 258(6), 2010–2053 (2015)

    Article  MATH  Google Scholar 

  6. Bauer, M., Harms, P., Michor, P.W.: Sobolev metrics on shape space of surfaces. J. Geom. Mech. 3(4), 389–438 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Bruveris, M.: Completeness properties of Sobolev metrics on the space of curves. J. Geom. Mech. 7(2), 125–150 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bruveris, M.: Regularity of maps between Sobolev spaces. Ann. Glob. Anal. Geom. 52, 11–24 (2017). https://doi.org/10.1007/s10455-017-9544-6

  9. Bruveris, M., Michor, P.W., Mumford, D.: Geodesic completeness for Sobolev metrics on the space of immersed plane curves. Forum Math. Sigma 2, e19 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bruveris, M., Vialard, F.-X.: On completeness of groups of diffeomorphisms. J. Eur. Math. Soc. (2014). https://doi.org/10.4171/JEMS/698

  11. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71(11), 1661–1664 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cervera, V., Mascaró, F., Michor, P.W.: The action of the diffeomorphism group on the space of immersions. Differ. Geom. Appl. 1(4), 391–401 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Constantin, A., Kolev, B.: Geodesic flow on the diffeomorphism group of the circle. Comment. Math. Helv. 78(4), 787–804 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Constantin, P., Lax, P.D., Majda, A.: A simple one-dimensional model for the three-dimensional vorticity equation. Comm. Pure Appl. Math. 38(6), 715–724 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dryden, I.L., Mardia, K.: Statistical Shape Analysis. Wiley, London (1998)

    MATH  Google Scholar 

  16. Ebin, D.G., Marsden, J.E.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 2(92), 102–163 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  17. Escher, J., Kolev, B.: Right-invariant Sobolev metrics of fractional order on the diffeomorphism group of the circle. J. Geom. Mech. 6(3), 335–372 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Escher, J., Kolev, B., Wunsch, M.: The geometry of a vorticity model equation. Commun. Pure Appl. Anal. 11(4), 1407–1419 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Frölicher, A., Kriegl, A.: Linear Spaces and Differentiation Theory. Pure and Applied Mathematics, A Wiley-Interscience Publication. Wiley, Chichester (1988)

    MATH  Google Scholar 

  20. Gay-Balmaz, F., Ratiu, T.S.: The geometry of the universal Teichmüller space and the Euler–Weil–Petersson equation. Adv. Math. 279, 717–778 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kendall, D.G.: Shape manifolds, Procrustean metrics, and complex projective spaces. Bull. Lond. Math. Soc. 16(2), 81–121 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. Klassen, E., Srivastava, A., Mio, M., Joshi, S.: Analysis of planar shapes using geodesic paths on shape spaces. IEEE Trans. Pattern Anal. 26(3), 372–383 (2004)

    Article  Google Scholar 

  23. Kolev, B.: Local well-posedness of the EPDiff equation: a survey. J. Geom. Mech. 9(2), 167–189 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kouranbaeva, S.: The Camassa–Holm equation as a geodesic flow on the diffeomorphism group. J. Math. Phys. 40(2), 857–868 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kriegl, A., Michor, P.W.: The Convenient Setting of Global Analysis. Mathematical Surveys and Monographs, vol. 53. American Mathematical Society, Providence (1997)

    Book  MATH  Google Scholar 

  26. Lang, S.: Fundamentals of Differential Geometry. Graduate Texts in Mathematics, vol. 191. Springer, New York (1999)

    Book  Google Scholar 

  27. Le, H.L., Kendall, D.G.: The Riemannian structure of Euclidean shape spaces: a novel environment for statistics. Ann. Stat. 21(3), 1225–1271 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mennucci, A.C., Yezzi, A., Sundaramoorthi, G.: Properties of Sobolev-type metrics in the space of curves. Interfaces Free Bound. 10(4), 423–445 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Michor, P.W., Mumford, D.: Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms. Doc. Math. 10, 217–245 (2005)

    MathSciNet  MATH  Google Scholar 

  30. Michor, P.W., Mumford, D.: Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. 8, 1–48 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Michor, P.W., Mumford, D.: An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Appl. Comput. Harmon. Anal. 23(1), 74–113 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Misiołek, G., Preston, S.C.: Fredholm properties of Riemannian exponential maps on diffeomorphism groups. Invent. Math. 179(1), 191–227 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ruzhansky, M., Turunen, V.: Pseudo-Differential Operators And Symmetries, Volume 2 of Pseudo-Differential Operators. Theory and Applications. Background Analysis and Advanced Topics. Birkhäuser, Basel (2010)

    MATH  Google Scholar 

  34. Shkoller, S.: Geometry and curvature of diffeomorphism groups with \(H^1\) metric and mean hydrodynamics. J. Funct. Anal. 160(1), 337–365 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. Shkoller, S.: Analysis on groups of diffeomorphisms of manifolds with boundary and the averaged motion of a fluid. J. Differ. Geom. 55(1), 145–191 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. Srivastava, A., Klassen, E.: Functional and Shape Data Analysis. Springer Series in Statistics. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  37. Srivastava, A., Klassen, E., Joshi, S.H., Jermyn, I.H.: Shape analysis of elastic curves in Euclidean spaces. IEEE Trans. Pattern Anal. 33(7), 1415–1428 (2011)

    Article  Google Scholar 

  38. Sundaramoorthi, G., Mennucci, A.C., Soatto, S., Yezzi, A.: A new geometric metric in the space of curves, and applications to tracking deforming objects by prediction and filtering. SIAM J. Imaging Sci. 4(1), 109–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sundaramoorthi, G., Yezzi, A., Mennucci, A.C.: Sobolev active contours. Int. J. Comput. Vis. 73, 345–366 (2007)

    Article  MATH  Google Scholar 

  40. Sundaramoorthi, G., Yezzi, A., Mennucci, A.C.: Coarse-to-fine segmentation and tracking using Sobolev active contours. IEEE Trans. Pattern Anal. Mach. Intell. 30(5), 851–864 (2008)

    Article  MATH  Google Scholar 

  41. Wunsch, M.: On the geodesic flow on the group of diffeomorphisms of the circle with a fractional Sobolev right-invariant metric. J. Nonlinear Math. Phys. 17(1), 7–11 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Younes, L.: Computable elastic distances between shapes. SIAM J. Appl. Math. 58(2), 565–586 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  43. Younes, L.: Shapes and Diffeomorphisms. Applied Mathematical Sciences, vol. 171. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  44. Younes, L., Michor, P.W., Shah, J., Mumford, D.: A metric on shape space with explicit geodesics. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 19(1), 25–57 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martins Bruveris.

Additional information

Communicated by L. Ambrosio.

Appendices

Appendix A: Smooth curves in \({\mathcal {S}}^{r}(\mathbb {Z})\)

The right framework to work with smooth maps on infinite dimensional (other than Banach spaces) are convenient vector spaces (see [19, 25]). Note that every Fréchet space is a convenient vector space. We will need the following lemma about recognising smooth curves in convenient vector spaces.

Lemma A.1

[19, 4.1.19] Let \(c{:}\; \mathbb {R}\rightarrow E\) be a curve in a convenient vector space. Let \({\mathcal {V}} \subseteq E'\) be a point-separating subset of bounded linear functionals such that the bornology of E has a basis of \(\sigma (E, {\mathcal {V}})\)-closed sets. Then the following are equivalent:

  1. (1)

    c is smooth;

  2. (2)

    There exist locally bounded curves \(c^k{:}\; \mathbb {R}\rightarrow E\) such that \(\ell \circ c {:}\; \mathbb {R}\rightarrow \mathbb {R}\) is smooth with \((\ell \circ c)^{(k)} = \ell \circ c^k\), for each \(\ell \in {\mathcal {V}}\).

To apply this lemma to the space \({\mathcal {S}}^{r}(\mathbb {Z})\) of Fourier multipliers we need to choose a suitable set \({\mathcal {V}}\) of linear functionals. This is accomplished in the following lemma. For \(m \in \mathbb {Z}\), let

$$\begin{aligned} {\text {ev}}_m {:}\; {\mathcal {S}}^r(\mathbb {Z}) \rightarrow \mathcal L(\mathbb {C}^d),\quad \mathbf a \mapsto \mathbf a(m), \end{aligned}$$

denote the evaluation mapping.

Lemma A.2

Let \(r \in \mathbb {R}\) and \({\mathcal {V}} = \{ \lambda \circ {\text {ev}}_m {:}\; m \in \mathbb {Z},\, \lambda \in {\mathcal {L}}(\mathbb {C}^d)' \} \subset {\mathcal {S}}^{r}(\mathbb {Z})'\). Then the bornology of \({\mathcal {S}}^{r}(\mathbb {Z})\) has a basis consisting of \(\sigma ({\mathcal {S}}^{r}(\mathbb {Z}), {\mathcal {V}})\)-closed sets.

Proof

We can regard \({\mathcal {V}}\) as a subset of both \({\mathcal {S}}^{r}(\mathbb {Z})'\) as well as \(\ell ^\infty (\mathbb {Z}, {\mathcal {L}}(\mathbb {C}^d))'\). It is shown in [19, 4.1.21] that the bornology of \(\ell ^\infty (\mathbb {Z}, {\mathcal {L}}(\mathbb {C}^d))\) has a basis of \(\sigma (\ell ^\infty (\mathbb {Z}, {\mathcal {L}}(\mathbb {C}^d)), {\mathcal {V}})\)-closed sets. We embed \({\mathcal {S}}^{r}(\mathbb {Z})\) as a closed subspace into

$$\begin{aligned} \iota {:}\; {\mathcal {S}}^{r}(\mathbb {Z}) \rightarrow \prod _{\alpha \in \mathbb {N}} \ell ^\infty (\mathbb {Z}, {\mathcal {L}}(\mathbb {C}^d)),\, \left( {\mathbf {a}}(m)\right) _{m\in \mathbb {Z}} \mapsto \left( \langle m \rangle ^{-(r-\alpha )} \Delta ^{\alpha } {\mathbf {a}}(m) \right) _{m \in \mathbb {Z},\, \alpha \in \mathbb {N}}. \end{aligned}$$

Because the bornology of the product is the product bornology it follows that a basis for the bornology on \(\prod _{\alpha \in \mathbb {N}} \ell ^\infty (\mathbb {Z}, {\mathcal {L}}(\mathbb {C}^d))\) is given by \(\sigma (\prod _{\alpha } \ell ^\infty ,{\mathcal {W}})\)-closed sets, where \({\mathcal {W}} = \bigcup _{\alpha \in \mathbb {N}} {\mathcal {V}} \circ {\text {pr}}_{\alpha }\) and \({\text {pr}}_{\alpha }\) denotes the canonical projection onto the \(\alpha \)-th factor. Here we note that on \({\mathcal {S}}^{r}(\mathbb {Z})'\) the set \(\iota ^*({\mathcal {W}})\) is contained in the linear space of \({\mathcal {V}}\) and hence the bornology of \({\mathcal {S}}^{r}(\mathbb {Z})\) has a basis consisting of \(\sigma ({\mathcal {S}}^{r}(\mathbb {Z}), {\mathcal {V}})\)-closed sets. \(\square \)

Appendix B: Square-root of an operator in \({\mathcal {E}}^{r}_{\lambda }(\mathbb {Z})\)

Since a positive definite Hermitian matrix has a unique positive square root, which depends smoothly on its coefficients, we can define formally the square root \(B_{\lambda } = {\mathbf {op}}\left( {\mathbf {a}}(\lambda , m)^{1/2}\right) \) of an element \(A_{\lambda } = {\mathbf {a}}_{\lambda }(D)\) in the class \({\mathcal {E}}^{r}_{\lambda }(\mathbb {Z})\). In order to prove this we need the following lemma.

Lemma B.1

[5, Lemma 4.8] Let \(a, b, x \in {\mathcal {L}}(\mathbb {C}^d)\) be three matrices satisfying

$$\begin{aligned} bx + xb = a, \end{aligned}$$

with b Hermitian and positive definite. Then

$$\begin{aligned} \left\| x\right\| \le \sqrt{\frac{d}{2}} \left\| b^{-1}\right\| \left\| a\right\| , \end{aligned}$$

where \(\left\| \cdot \right\| \) denotes the Frobenius norm, i.e. \(\left\| x\right\| = \sqrt{{\text {tr}} xx^*}\).

The following lemma together with its proof is a generalisation of [5, Lemma 4.7] to our situation of one-parameter families of symbols.

Lemma B.2

The positive square root of an operator in the class \({\mathcal {E}}^{r}_{\lambda }(\mathbb {Z})\) belongs to the class \({\mathcal {E}}^{r/2}_{\lambda }(\mathbb {Z})\). Conversely, the square of an operator in the class \({\mathcal {E}}^{r}_{\lambda }(\mathbb {Z})\) belongs to the class \({\mathcal {E}}^{2r}_{\lambda }(\mathbb {Z})\).

Proof

We will prove the estimate

$$\begin{aligned} \left\| \partial ^\beta _{\lambda } \Delta ^{\alpha } {\mathbf {b}}(\lambda , m)\right\| \lesssim \langle m\rangle ^{r/2-\alpha }, \end{aligned}$$

which holds locally uniformly in \(\lambda \), by induction over \(\alpha + \beta \). If \(\alpha + \beta = 0\) the statement is \(\Vert {\mathbf {b}}(\lambda , m) \Vert \lesssim \langle m \rangle ^{r/2}\). Assume that it has been proven for \(\alpha + \beta \le k\). Then let \(\alpha + \beta = k+1\) and, omitting the arguments \((\lambda , m)\), we obtain using the product rule,

$$\begin{aligned} \partial ^\beta _{\lambda } \Delta ^{\alpha } {\mathbf {a}} = {\mathbf {b}}\left( \partial ^\beta _{\lambda } \Delta ^{\alpha } {\mathbf {b}}\right) + \left( \partial ^\beta _{\lambda } \Delta ^{\alpha } {\mathbf {b}} \right) {\mathbf {b}} + \sum _{(i,j) \in X} \left( {\begin{array}{c}\alpha \\ i\end{array}}\right) \left( {\begin{array}{c}\beta \\ j\end{array}}\right) \partial ^{j}_{\lambda } \Delta ^i {\mathbf {b}}\, \partial ^{\beta -j}_{\lambda } \Delta ^{\alpha -i} {\mathbf {b}}, \end{aligned}$$

with

$$\begin{aligned} X = \left\{ (i,j) {:}\; 0 \le i \le \alpha ,\, 0 \le j \le \beta ,\, i + j < \alpha + \beta \right\} . \end{aligned}$$

Then by the induction assumption

$$\begin{aligned} \left\| \partial ^{j}_{\lambda } \Delta ^i {\mathbf {b}}\, \partial ^{\beta -j}_{\lambda } \Delta ^{\alpha -i} {\mathbf {b}}\right\| \lesssim \langle m \rangle ^{r/2-i} \langle m \rangle ^{r/2-\alpha +i} \lesssim \langle m \rangle ^{r-\alpha }, \end{aligned}$$

and hence we obtain via Lemma B.1,

$$\begin{aligned} \left\| \partial ^\beta _{\lambda } \Delta ^{\alpha } {\mathbf {b}}\right\| \lesssim \langle m \rangle ^{-r/2} \langle m \rangle ^{r-\alpha } \lesssim \langle m \rangle ^{r/2-\alpha }. \end{aligned}$$

This completes the induction. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauer, M., Bruveris, M. & Kolev, B. Fractional Sobolev metrics on spaces of immersed curves. Calc. Var. 57, 27 (2018). https://doi.org/10.1007/s00526-018-1300-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1300-7

Mathematics Subject Classification

Navigation