Skip to main content
Log in

Towards a cloud-based automated surveillance system using wireless technologies

  • Special Issue Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Cloud Computing can bring multiple benefits for Smart Cities. It permits the easy creation of centralized knowledge bases, thus straightforwardly enabling that multiple embedded systems (such as sensor or control devices) can have a collaborative, shared intelligence. In addition to this, thanks to its vast computing power, complex tasks can be done over low-spec devices just by offloading computation to the cloud, with the additional advantage of saving energy. In this work, cloud’s capabilities are exploited to implement and test a cloud-based surveillance system. Using a shared, 3D symbolic world model, different devices have a complete knowledge of all the elements, people and intruders in a certain open area or inside a building. The implementation of a volumetric, 3D, object-oriented, cloud-based world model (including semantic information) is novel as far as we know. Very simple devices (orange Pi) can send RGBD streams (using kinect cameras) to the cloud, where all the processing is distributed and done thanks to its inherent scalability. A proof-of-concept experiment is done in this paper in a testing lab with multiple cameras connected to the cloud with 802.11ac wireless technology. Our results show that this kind of surveillance system is possible currently, and that trends indicate that it can be improved at a short term to produce high performance vigilance system using low-speed devices. In addition, this proof-of-concept claims that many interesting opportunities and challenges arise, for example, when mobile watch robots and fixed cameras would act as a team for carrying out complex collaborative surveillance strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Why Hypertable? | Hypertable-Big Data. Big Performance. URL http://hypertable.com/why_hypertable/

  2. Ahmed, T., Pathan, A.S., Ahmed, S.: Adaptive algorithms for automated intruder detection in surveillance networks. In: 2014 International Conference on Advances in Computing, Communications and Informatics ICACCI, pp. 2775–2780 (2014). doi:10.1109/ICACCI.2014.6968617

  3. Alamri, A., Hossain, M.S., Almogren, A., Hassan, M.M., Alnafjan, K., Zakariah, M., Seyam, L., Alghamdi, A.: QoS-adaptive service configuration framework for cloud-assisted video surveillance systems. Multimedia Tools and Applications pp. 1–16 (2015). doi:10.1007/s11042-015-3074-7. http://0-link.springer.com.fama.us.es/article/10.1007/s11042-015-3074-7

    Article  Google Scholar 

  4. Angin, P., Bhargava, B., Helal, S.: A Mobile-Cloud Collaborative Traffic Lights Detector for Blind Navigation. In: 2010 Eleventh International Conference on Mobile Data Management (MDM), pp. 396–401 (2010). doi:10.1109/MDM.2010.71

  5. Appeldoom, R.: A volumetric object-oriented world model applied in robot navigation. Master Thesis, Eindhoven University of Technology, Eindhoven (2014)

  6. Kim, B., Bhaskar, K.P.: Special section on emerging multimedia technology for smart surveillance system with iot environment. J. Supercomput. 73(3), 923–925 (2017). doi:10.1007/s11227-016-1939-9

    Article  Google Scholar 

  7. Ben Hamida, A., Koubaa, M., Ben Amar, C., Nicolas, H.: Toward scalable application-oriented video surveillance systems. Sci. Inf. Conf. (SAI) 2014, 384–388 (2014). doi:10.1109/SAI.2014.6918215

    Article  Google Scholar 

  8. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A Distributed Storage System for Structured Data. ACM Trans. Comput. Syst. 26(2), 4:1–4:26 (2008). doi:10.1145/1365815.1365816

    Article  Google Scholar 

  9. Charfi, E., Chaari, L., Kamoun, L.: PHY/MAC enhancements and QoS mechanisms for very high throughput WLANs: a survey. IEEE Commun. Surveys Tutor. 15(4), 1714–1735 (2013). doi:10.1109/SURV.2013.013013.00084

    Article  Google Scholar 

  10. Dogmus, Z., Papantoniou, A., Kilinc, M., Yildirim, S., Erdem, E., Patoglu, V.: Rehabilitation robotics ontology on the cloud. In: 2013 IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 1–6 (2013). doi:10.1109/ICORR.2013.6650415

  11. Elfring, J., van den Dries, S., van de Molengraft, M.J.G., Steinbuch, M.: Semantic world modeling using probabilistic multiple hypothesis anchoring. Robotics and Autonomous Systems 61(2), 95–105 (2013). doi:10.1016/j.robot.2012.11.005, http://www.sciencedirect.com/science/article/pii/S0921889012002163

    Article  Google Scholar 

  12. Ghose, A., Chakravarty, K., Agrawal, A.K., Ahmed, N.: Unobtrusive Indoor Surveillance of Patients at Home Using Multiple Kinect Sensors. In: Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems, SenSys ’13, pp. 40:1–40:2. ACM, New York, NY, USA (2013). doi:10.1145/2517351.2517412

  13. Guizzo, E.: Robots with their heads in the clouds. IEEE Spectrum 48(3), 16–18 (2011). doi:10.1109/MSPEC.2011.5719709

    Article  Google Scholar 

  14. Hamida, A.B., Koubaa, M., Nicolas, H., Amar, C.B.: Video surveillance system based on a scalable application-oriented architecture. Multimedia Tools and Applications pp. 1–27 (2015). doi:10.1007/s11042-015-2987-5, http://0-link.springer.com.fama.us.es/article/10.1007/s11042-015-2987-5

    Article  Google Scholar 

  15. Hassan, M., Hossain, M., Al-Qurishi, M.: Cloud-based mobile IPTV terminal for video surveillance. In: 2014 16th International Conference on Advanced Communication Technology (ICACT), pp. 876–880 (2014). doi:10.1109/ICACT.2014.6779086

  16. Park, H.D.: Scalable architecture for an automated surveillance system using edge computing. J. Supercomput. 73(3), 926 (2017). doi:10.1007/s11227-016-1750-7

    Article  Google Scholar 

  17. Hossain, M.A.: Framework for a cloud-based multimedia surveillance system. International Journal of Distributed Sensor Networks 10(5), 135,257 (2014). doi:10.1155/2014/135257

    Article  Google Scholar 

  18. Iigo-Blasco, P., Diaz-del Rio, F., Romero-Ternero, M.C., Cagigas-Muiz, D., Vicente-Diaz, S.: Robotics software frameworks for multi-agent robotic systems development. Robot. Auton. Syst. 60(6), 803–821 (2012). doi:10.1016/j.robot.2012.02.004

    Article  Google Scholar 

  19. Khetrapal, A., Ganesh, V.: Hbase and hypertable for large scale distributed storage systems. Dept. of Computer Science, Purdue University (2006). Available at: urlhttp://cloud.pubs.dbs.uni-leipzig.de/node/46

  20. Limna, T., Tandayya, P.: A flexible and scalable component-based system architecture for video surveillance as a service, running on infrastructure as a service. Multimedia Tools and Applications pp. 1–27 (2014). doi:10.1007/s11042-014-2373-8, http://0-link.springer.com.fama.us.es/article/10.1007/s11042-014-2373-8

    Article  Google Scholar 

  21. Liu, J., Nishimura, S., Araki, T.: Wally: A Scalable Distributed Automated Video Surveillance System with Rich Search Functionalities. In: Proceedings of the 22Nd ACM International Conference on Multimedia, MM ’14, pp. 729–730. ACM, New York, NY, USA (2014). doi:10.1145/2647868.2654872

  22. Lunenburg, J., van den Dries, S., Bento Ferreira, L., van de Molengraft, M.J.G.: Tech United Eindhoven @Home 2015 Team Description Paper. Eindhoven University of Technology, Eindhoven, Tech. rep. (2015)

  23. Alsmirat, M.A., Jararweh, Y.: Internet of surveillance: a cloud supported large-scale wireless surveillance system. J. Supercomput. 73(3), 973 (2017). doi:10.1007/s11227-016-1857-x

    Article  Google Scholar 

  24. Martins, G.: Reducing Communication Delay Variability for a Group of Robots. Ph.D. thesis, University of Denver, Denver, CO, USA (2013)

  25. Meinel, L., Findeisen, M., Hes, M., Apitzsch, A., Hirtz, G.: Automated real-time surveillance for ambient assisted living using an omnidirectional camera. In: 2014 IEEE International Conference on Consumer Electronics (ICCE), pp. 396–399 (2014). doi:10.1109/ICCE.2014.6776056

  26. Neal, D., Rahman, S.M.: Video surveillance in the cloud-computing? In: 2012 7th International Conference on Electrical and Computer Engineering, pp. 58–61 (2012). doi:10.1109/ICECE.2012.6471484

  27. Oh, J.M., Moon, N., Hong, S.: Trajectory based database management for intelligent surveillance system with heterogeneous sensors. Multimedia Tools and Applications pp. 1–16 (2015). DOI 10.1007/s11042-015-2725-z. http://link.springer.com/article/10.1007/s11042-015-2725-z

  28. Ozalp Babaoglu, Moreno Marzolla: Escape From the Data Center: The Promise of Peer-to-Peer Cloud Computing. IEEE Spectrum Magazine (2014)

  29. Prati, A., Vezzani, R., Fornaciari, M., Cucchiara, R.: Intelligent video surveillance as a service. In: Atrey, P.K., Kankanhalli, M.S., Cavallaro A. (eds.) Intelligent multimedia surveillance, pp. 1–16. Springer Berlin Heidelberg (2013). doi:10.1007/978-3-642-41512-8_1

    Google Scholar 

  30. Riazuelo, L., Civera, J., Montiel, J.M.M.: C2tam: a cloud framework for cooperative tracking and mapping. Robot. Auton. Syst. 62(4), 401–413 (2014). doi:10.1016/j.robot.2013.11.007

    Article  Google Scholar 

  31. del Rio, F.D., Salmeron-Garcia, J., Sevillano, J.L.: Extending amdahl’s law for the cloud computing era. Computer 49(2), 14–22 (2016). doi:10.1109/MC.2016.49

    Article  Google Scholar 

  32. RTC Group: Cloud Based Surveillance System (2015). URL https://www.youtube.com/playlist?list=PLgUj9dv84AxAVFttquWg1VPaza5no5b2K

  33. Seo, K.T., Hwang, H.S., Moon, I.Y., Kwon, O.Y., Kim, B.J.: Performance comparison analysis of linux container and virtual machine for building cloud. Adv. Sci. Technol. Lett. 66(105–111), 2 (2014)

    Google Scholar 

  34. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: Vision and challenges. IEEE Internet of Things Journal pp. 637–646 (2016). doi:10.1109/JIOT.2016.2579198. http://ieeexplore.ieee.org/document/7488250/

    Article  Google Scholar 

  35. Shim, J., Lim, Y., Park, J.: Architectural Design of Cloud Gateway in Smart Surveillance System. In: Proceedings of the 2013 Research in Adaptive and Convergent Systems, RACS ’13, pp. 261–266. ACM, New York, NY, USA (2013). doi:10.1145/2513228.2513320

  36. Song, B., Tian, Y., Zhou, B.: Design and Evaluation of Remote Video Surveillance System on Private Cloud. In: 2014 International Symposium on Biometrics and Security Technologies (ISBAST), pp. 256–262 (2014). doi:10.1109/ISBAST.2014.7013131

  37. Waibel, M., Beetz, M., Civera, J., D’Andrea, R., Elfring, J., Galvez-Lopez, D., Haussermann, K., Janssen, R., Montiel, J.M.M., Perzylo, A., Schiessle, B., Tenorth, M., Zweigle, O., van de Molengraft, R.: RoboEarth. IEEE Robot. Autom. Mag. 18(2), 69–82 (2011). doi:10.1109/MRA.2011.941632

    Article  Google Scholar 

  38. Zhang, T., Chowdhery, A., Bahl, P.V., Jamieson, K., Banerjee, S.: The Design and Implementation of a Wireless Video Surveillance System. In: Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, MobiCom ’15, pp. 426–438. ACM, New York, NY, USA (2015). doi:10.1145/2789168.2790123

Download references

Acknowledgements

The work shown in this paper has been supported by the Spanish grant (supported by the Ministerio de Economía y Competitividad and the European Regional Development Fund) COFNET (Event-based Cognitive Visual and Auditory Sensory Fusion, TEC2016-77785-P) and by Andalusian Regional Excellence Research Project grant (with support from the European Regional Development Fund) MINERVA (P12-TIC-1300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Díaz-del-Río.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salmerón-García, J.J., van den Dries, S., Díaz-del-Río, F. et al. Towards a cloud-based automated surveillance system using wireless technologies. Multimedia Systems 25, 535–549 (2019). https://doi.org/10.1007/s00530-017-0558-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-017-0558-5

Keywords

Navigation