Skip to main content
Log in

Magnetic fabrics indicating Late Quaternary seismicity in the Himalayan foothills

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The anisotropy of magnetic susceptibility (AMS) study was performed on soft sediment samples from a trenched fault zone across the Himalayan frontal thrust (HFT), western Himalaya. AMS orientation of K min axes in the trench sediments is consistent with lateral shortening revealed by geometry of deformed regional structures and recent earthquakes. Well-defined vertical magnetic foliation parallel to the flexure cleavage in which a vertical magnetic lineation is developed, high anisotropy, and triaxial ellipsoids suggest large overprinting of earthquake-related fabrics. The AMS data suggest a gradual variation from layer parallel shortening (LPS) at a distance from the fault trace to a simple shear fabric close to the fault trace. An abrupt change in the shortening direction (K min) from NE–SW to E–W suggests a juxtaposition of pre-existing layer parallel shortening fabric, and bending-related flexure associated with an earthquake. Hence the orientation pattern of magnetic susceptibility axes helps in identifying co-seismic structures in Late Holocene surface sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aubourg C, Rochette P, Vialon P (1991) Subtle stretching lineation revealed by magnetic fabric of Callovian-Oxfordian black shales (French Alps). Tectonophysics 185:211–223

    Article  Google Scholar 

  • Aubourg C, Rochette P, Stephan JF, Popoff M, Chabert-Pelline C (1999) The magnetic fabric of weakly deformed Late Jurassic shales from the southern sub alpine chains (French Alps): evidence of SW-directed transport direction. Tectonophysics 307:15–32

    Article  Google Scholar 

  • Averbuch O, Frizon de Lamotte D, Kissel C (1992) Magnetic fabric as a structural indicator of the deformation path within a fold-thrust structure: a test case from the Corbieres (NE Pyrenees, France). J Struct Geol 14:461–474

    Article  Google Scholar 

  • Banerjee P, Burgmann R (2002) Convergence across northwest Himalaya from GPS measurements. Geophys Res Lett 29:13. doi:10.1029/2002GL015184

    Article  Google Scholar 

  • Borradaile GJ (1988) Magnetic susceptibility, petrofabrics and strain—a review. Tectonophysics 156:1–20

    Article  Google Scholar 

  • Borradaile GJ (1991) Correlation of strain with anisotropy of magnetic susceptibility (AMS). Pageoph 135:15–29

    Article  Google Scholar 

  • Borradaile GJ, Hamilton T (2004) Magnetic fabrics may proxy as neotectonic stress trajectories, Polis rift, Cyprus. Tectonics 23 TC1001. doi:10.1029/2002TC001434

  • Borradaile GJ, Henry B (1997) Tectonic applications of magnetic susceptibility and its anisotropy. Earth Sci Rev 42:49–93

    Article  Google Scholar 

  • De Wall H, Warr LN (2004) Oblique magnetic fabric in siderite-bearing politic rocks of the Upper Carboniferous Culm Basin, SW England: an indicator for palaeo-fluid migration? In: Martin-Hernandez F, Lüneburg CM, Aubourg C, Jackson M (eds) Magnetic fabrics: methods and applications, vol 238. Geological Society of London, Special Publication, pp 493–507

  • Dubey AK (2004) Structural evolution of the Himalaya: field studies, experimental models, and implications for seismicity. Himalayan Geol 25:33–50

    Google Scholar 

  • Dunlop DJ, Özdemir O (2001) Rock magnetism. Cambridge University Press, Cambridge

  • Gansser A (1964) Geology of the Himalayas. Wiley Interscience, London

    Google Scholar 

  • Graham JW (1966) Significance of magnetic anisotropy in Appalachian sedimentary rocks. In: Steinhart JS, Smith TJ (eds) The earth beneath the continents, vol 10. Geophysical Monographs, pp 627–648

  • Hardebeck JL, Hauksson E (2001) Crustal stress field in southern California and its implications for fault mechanics. J Geophys Res 106:21859–21882

    Article  Google Scholar 

  • Hirt AM, Lowrie W, Clendenen WS, Kligfield R (1988) The correlation of magnetic anisotropy with strain in the Chelmsford Formation of the Sudbury Basin, Ontario. Tectonophysics 145:177–189

    Article  Google Scholar 

  • Housen BA, Richter C, van der Pluijm BA (1993) Composite magnetic anisotropy fabrics: experiments, numerical models, and implications for the quantification of rock fabrics. Tectonophysics 200:1–12

    Article  Google Scholar 

  • Housen BA, Tobin HJ, Labaume P, Leitch EC, Maltman A (1996) ODP leg 156 shipboard science party Strain decoupling across the decollement of the Barbados accretionary prism. Geology 24(2):127–130

    Article  Google Scholar 

  • Hrouda F (1982) Magnetic anisotropy of rocks and its application in geology and geophysics. Geophys Surv 5:37–82

    Article  Google Scholar 

  • Hrouda F, Jelinek V, Hruskova L (1990) A package of programs for statistical evaluation of magnetic data using IBM-PC computers. Eos Trans AGU 71(43):1289

    Google Scholar 

  • Jayangondaperumal R, Thakur VC (2008) Kinematics of coseismic secondary surface fractures on southeastward extension of the rupture zone of Kashmir earthquake. Tectonophysics 446:61–76

    Article  Google Scholar 

  • Jelinek V (1977) The statistical theory of measuring anisotropy of magnetic susceptibility of rocks and its application. Brno Geofyzika

  • Jelinek V (1981) Characterization of the magnetic fabrics of rocks. Tectonophysics 79:63–67

    Article  Google Scholar 

  • Kissel C, Barrier E, Laj C, Lee TO (1986) Magnetic fabric in “undeformed” marine clays from compressional zones. Tectonics 5:769–781

    Article  Google Scholar 

  • Kligfield R, Owens WH, Lowrie W (1981) Magnetic susceptibility ansiostropy, strain and progressive deformation in Permian sediments from the Maritime Alps (France). Earth Planet Sci Lett 55:181–189

    Article  Google Scholar 

  • Kumar S, Wesnousky SG, Rockwell TK, Briggs RW, Thakur VC, Jayangondaperumal R (2006) Paleoseismic evidence of great surface rupture earthquakes along the Indian Himalaya. J Geophys Res 111:B03304. doi:10.1029/2004JB003309

    Article  Google Scholar 

  • Lave J, Yule D, Sapkota S, Basant K, Madden C, Attal M, Pandey R (2005) Evidence for a great medieval earthquake (~1100 A.D.) in the central Himalayas, Nepal. Science 307:1302–1305

    Article  Google Scholar 

  • Lee TQ, Angelier J (2000) Tectonic significance of magnetic susceptibility fabrics in Plio-Quaternary mudstones of southwestern foothills, Taiwan. Earth Planet Space 52:527–538

    Google Scholar 

  • Lee TQ, Kissel C, Laj, Horng CS, Lue YT (1990) Magnetic fabric analysis of the Plio Pleistocene sedimentary formations of the coastal range of Taiwan. Earth Planet Sci Lett 98:23–32

  • Levi S, Nabelek J, Yeats RS (2005) Paleomagnetism-based limits on earthquake magnitudes in northwestern metropolitan Los Angeles, California, USA. Geology 33(5):401–404. doi:10.1130/G21190.1

    Article  Google Scholar 

  • Levi S, Weinberger R, Alfa T, Eyal Y, Marco S (2006) Earthquake-induced clastic dikes detected by anisotropy of magnetic susceptibility. Geology 34(2):69–72. doi:10.1130/G22001.1

    Article  Google Scholar 

  • Lüneburg CM, Lampert SA, Lebit HD, Hirt AM, Casey M, Lowrie W (1999) Magnetic anisotropy, rock fabrics and finite strain in deformed sediments of SW Sardinia (Italy). Tectonophysics 307:51–74

    Article  Google Scholar 

  • Martinez-Diaz JJ (2002) Stress field variation related to fault interaction in a reverse oblique-slip fault: the Alhama de Murcia fault, Betic Cordillera, Spain. Tectonophysics 356:291–305

    Article  Google Scholar 

  • Nakata T (1972) Geomorphic history and crustal movements of the foothills of the Himalayas, vol 22. Science Report Tohoku University, 7th series, pp 39–177

  • Nelson KD (1998) The Himalaya and Tibetan Plateau: a perspective from project INDEPTH, paper presented at Geological Society of America, 1998 annual meeting. Geological Society of America, Boulder

  • Owens WH (1993) Magnetic fabric studies of samples from Hole 808c, Nankai trough. In: Hill IA, Taira Firth JV (eds) Proceeding of the ocean drilling program, scientific results, ocean drilling program, vol 131, pp 301–310

  • Parés JM (2004) How deformed are weakly deformed mud rocks? Insights from magnetic anisotropy. In: Martin-Hernandez F, Lüneburg CM, Aubourg C, Jackson M (eds) Magnetic fabrics: methods and applications, vol 238. Geological Society, Special Publication, pp 191–203

  • Parés JM, van der Pluijm BA (2002) Evaluating magnetic lineations (AMS) in deformed rocks. Tectonophysics 350:283–298

    Article  Google Scholar 

  • Parés JM, van der Pluijm BA (2003) Magnetic fabrics in low-strain mud rocks: AMS of pencil structures in the Knobs Formation, mud rocks (Valley and Ridge Province, US Appalachians). J Struct Geol 25:1349–1358

    Article  Google Scholar 

  • Parés JM, van der Pluijm BA, Dinares-Turell J (1999) Evolution of magnetic fabrics during incipient deformation of mudrocks (Pyrenees, northern Spain). Tectonophysics 307:1–14

    Article  Google Scholar 

  • Philip H, Meghraoui M (1983) Structural analysis and interpretation of the surface deformations of the EL ASNAM earthquake of OCTOBER 10, 1980. Tectonics 2(1):17–49

    Article  Google Scholar 

  • Rathore JS (1980) The magnetic fabric of some slates from the Borrodale volcanic group in the English Lake District and their correlations with strain. Tectonophysics 67:207–220

    Article  Google Scholar 

  • Robion P, Grelaud S, Frizon de Lamotte D (2007) Pre-folding magnetic fabrics in fold-and-thrust belts: Why the apparent internal deformation of the sedimentary rocks from the Minervois basin (NE-Pyrenees, France) is so high compared to the Potwar basin (SW-Himalaya, Pakistan)? Sed Geol 196:181–200

    Article  Google Scholar 

  • Rochette P, Jackson M, Aubourg C (1992) Rock magnetism and the interpretation of the anisotropy of magnetic susceptibility. Rev Geophys 30:209–226

    Article  Google Scholar 

  • Sagnotti L, Speranza F (1993) Magnetic fabric analysis of the Plio- Pleistocene clayey units of the Sant’ Arcangelo basin, Southern Italy. Phys Earth Planet Inter 77:165–176

    Article  Google Scholar 

  • Sagnotti L, Faccenna C, Funiciello R, Mattei M (1994) Magnetic fabric and structural setting of Plio-Pleistocene clayey units in an extensional regime: the Tyrrhenian margin of central Italy. J Struct Geol 16:1243–1257

    Article  Google Scholar 

  • Sagnotti L, Speranza F, Winkler A, Mattei M, Funiciello R (1998) Magnetic fabric of clay sediments from the external northern Apennines (Italy). Phys Earth Planet Inter 105:73–93

    Article  Google Scholar 

  • Saint-Bezar B, Hebert RL, Aubourg C, Robion P, Swennen R, Frizon de Lamotte D (2002) Magnetic fabric and petrographic investigation of hematite-bearing sandstone with ramp-related folds: examples from the south Atlas Front (Morocco). J Struct Geol 24:1507–1520

    Article  Google Scholar 

  • Schwehr K, Tauxe L (2003) Characterization of soft-sediment deformation: detection of cryptoslumps using magnetic methods. Geology 31:203–206

    Article  Google Scholar 

  • Seeber L, Armbruster J (1981) Great detachment earthquakes along the Himalayan Arc and long-term forecasting, in earthquake prediction. In: Simpson DW, Richards PG (eds) An international review. American Geophysical Union, Washington, DC, pp 259–277

    Google Scholar 

  • Tarling DH, Hrouda F (1993) The magnetic anisotropy of rocks. Chapman and Hall, London

    Google Scholar 

  • Valdiya KS (1992) The main boundary thrust zone of the Himalaya, India. Annal Tect 6:54–84

    Google Scholar 

  • Wesnousky SG, Kumar S, Mohindra R, Thakur VC (1999) Uplift and convergence along the Himalayan Frontal thrust of India. Tectonics 18:967–976

    Article  Google Scholar 

  • Yeats RS, Hussain A (2006) Surface Features of the Mw 7.6, 8 October 2005 Kashmir earthquake, Northern Himalaya, Pakistan: implications for the Himalayan front. In: Seismological Society of America annual meeting (SSA), San Francisco, CA

Download references

Acknowledgments

We thank Dr. Carlo Dietl, Dr. Helga de Wall, Prof. Wolf-Christian Dullo, and an anonymous reviewer for review comments that helped in revising the manuscript. The trench work was funded by NSF grant No. EAR 9972955 to S. G. Wesnousky. The authors wish to acknowledge Drs. B. R. Arora, P. Banerjee, V. Sriram and late Professor K. N. Khattri for helpful discussions. Rakesh Kumar assisted in the rock magnetic analysis and Samay Singh in X-ray diffractometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Kumar Dubey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayangondaperumal, R., Dubey, A.K., Senthil Kumar, B. et al. Magnetic fabrics indicating Late Quaternary seismicity in the Himalayan foothills. Int J Earth Sci (Geol Rundsch) 99 (Suppl 1), 265–278 (2010). https://doi.org/10.1007/s00531-009-0494-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-009-0494-5

Keywords

Navigation