Skip to main content
Log in

Succession of Permian and Mesozoic metasomatic events in the eastern Pyrenees with emphasis on the Trimouns talc–chlorite deposit

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Recent studies proposing pre-orogenic mantle exhumation models have helped renew the interest of the geosciences community in the Pyrenees, which should be now interpreted as a hyper-extended passive margin before the convergence between Iberia and Eurasia occurred. Unresolved questions of the Pyrenean geology, as well as the understanding of the formation of hyper-extended passive margins, are how the crust was thinned, and when, where and how the crustal breakoff occurred. The study of the Variscan and pre-Variscan Pyrenean basement is thus critical to document and understand this Cretaceous crustal thinning. In order to specify the timing of Mesozoic metasomatism and the associated deformation in the pre-Mesozoic basement of the Pyrenees, we carried out a U–Th–Pb laser ablation ICP–MS study on a large panel of REE and titanium-rich minerals (titanite and rutile) from talc–chlorite ores from the eastern Pyrenees, with a special emphasis on the Trimouns deposit, the world’s largest talc quarry. Our results suggest that the Trimouns talc formation was restricted to the upper Aptian–Cenomanian time, while the talc and chlorite formation in the eastern Pyrenees occurred during several distinct Permian, Jurassic and Cretaceous episodes. These results give strong constraints on the tectonic setting of the Pyrenean domain during the transition between the Variscan and Alpine orogenic cycles, and particularly on when and how the upper crust was thinned before the crustal breakoff and the final mantle exhumation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albarède F, Michard-Vitrac A (1978) Age and significance of the North Pyrenean metamorphism. Earth Planet Sci Lett 40:327–332. doi:10.1016/0012-821X(78)90157-7

    Article  Google Scholar 

  • Aranitis S (1967) Les gisements de talc pyrénéens. Description. Essais d’interprétation de leur genèse. Thèse de Doctorat. BRGM, France

    Google Scholar 

  • Arthaud F, Matte P (1975) Les décrochements tardi-hercyniens du sud-ouest de l’Europe. Géométrie et essai de reconstitution des conditions de la déformation. Tectonophysics 25:139–171. doi:10.1016/0040-1951(75)90014-1

    Article  Google Scholar 

  • Azambre B, Rossy M (1976) Le magmatisme alcalin d’age cretacé dans les Pyrenées occidentales et l’arc basque; ses relations avec le metamorphisme et la tectonique. Bull Soc Géol Fr 18:1725–1728. doi:10.2113/gssgfbull.S7-XVIII.6.1725

    Article  Google Scholar 

  • Barnolas A, Chiron J-C (1995) Synthèse géologique et géophysique des Pyrénées Tome 1 Cycle Hercynien. BRGM, ITGE, Orléans, Madrid

    Google Scholar 

  • Baudron JC, Jébrak M, Joannes C, Lhegu J, Touray JC, Ziserman A (1980) Nouvelles datations K/Ar sur des filons à quartz et fluorine du Massif Central français. C R Acad Sci Paris 280:951–953

    Google Scholar 

  • Béziat D, Joron JL, Monchoux P, Treuil M, Walgenwitz F (1991) Geodynamic implications of geochemical data for the Pyrenean ophites (Spain–France). Chem Geol 89:243–262. doi:10.1016/0009-2541(91)90019-N

    Article  Google Scholar 

  • Boiron M-C, Boulvais P, Cathelineau M, Banks D, Calvayrac N, Hubert G (2005) Fluid circulation at the origin of the Trimouns talc deposit (Pyrenees, France). ECROFI XVIII, Siena

    Google Scholar 

  • Bonhomme MG, Baubron J-C, Jebrak M (1987) Minéralogie, géochimie, terres rares et âge K-Ar des argiles associées aux minéralisations filoniennes. Chem Geol Isot Geosci Sect 65:321–339. doi:10.1016/0168-9622(87)90012-1

    Article  Google Scholar 

  • Boulvais P, de Parseval P, D’Hulst A, Paris P (2006) Carbonate alteration associated with talc-chlorite mineralization in the eastern Pyrenees, with emphasis on the St. Barthelemy Massif. Mineral Petrol 88:499–526. doi:10.1007/s00710-006-0124-x

    Article  Google Scholar 

  • Boulvais P, Ruffet G, Cornichet J, Mermet M (2007) Cretaceous albitization and dequartzification of Hercynian peraluminous granite in the Salvezines Massif (French Pyrénées). Lithos 93:89–106. doi:10.1016/j.lithos.2006.05.001

    Article  Google Scholar 

  • Brockamp O, Clauer N (2005) A km-scale illite alteration zone in sedimentary wall rocks adjacent to a hydrothermal fluorite vein deposit. Clay Miner 40:245–260. doi:10.1180/0009855054020170

    Article  Google Scholar 

  • Bronner A, Sauter D, Manatschal G, Péron-Pinvidic G, Munschy M (2011) Magmatic breakup as an explanation for magnetic anomalies at magma-poor rifted margins. Nat Geosci 4:549–553. doi:10.1038/ngeo1201

    Article  Google Scholar 

  • Bronner A, Sauter D, Manatschal G, Péron-Pinvidic G, Munschy M (2012) Reply to “Problematic plate reconstruction”. Nat Geosci 5:677–677. doi:10.1038/ngeo1597

    Article  Google Scholar 

  • Caballero JM, Casquet C, Galindo C, Gonzalez-Casado JM, Sneilling N, Tornos F (1992) Dating hydrothermal events in the Sierra del Guadarrama, Iberian Hercynian Belt. Spain. Geogaceta 11:18–22

    Google Scholar 

  • Canérot J (2008) Les Pyrénées: histoire géologique et itinéraires de découverte. Atlantica & BRGM éd, Biarritz

  • Cathelineau M, Fourcade S, Clauer N, Buschaert S, Rousset D, Boiron M-C, Meunier A, Lavastre V, Javoy M (2004) Dating multistage paleofluid percolations: a K–Ar and 18O/16O study of fracture illites from altered Hercynian plutonites at the basement/cover interface (Poitou High, France). Geochim Cosmochim Acta 68:2529–2542. doi:10.1016/j.gca.2003.10.037

    Article  Google Scholar 

  • Cathelineau M, Boiron M-C, Fourcade S, Ruffet G, Clauer N, Belcourt O, Coulibaly Y, Banks DA, Guillocheau F (2012) A major Late Jurassic fluid event at the basin/basement unconformity in western France: 40Ar/39Ar and K-Ar dating, fluid chemistry, and related geodynamic context. Chem Geol 322–323:99–120. doi:10.1016/j.chemgeo.2012.06.008

    Article  Google Scholar 

  • Chevrot S, Villaseñor A, Sylvander M, Benahmed S, Beucler E, Cougoulat G, Delmas P, de Saint Blanquat M, Diaz J, Grimaud F, Lagabrielle Y, Manatschal G, Mocquet A, Pauchet H, Paul A, Péquegnat C, Quillard O, Roussel S, Ruiz M, Wolyniec D (2014) High-resolution imaging of the Pyrenees and Massif Central from the data of the PYROPE and IBERARRAY portable array deployments. J Geophys Res Solid Earth 119:6399–6420. doi:10.1002/2014JB010953

    Article  Google Scholar 

  • Choukroune P (1976) Structure et évolution tectonique de la zone Nord-Pyrénéenne. Analyse de la déformation dans une portion de chaîne à schistosité subverticale. Société Géologique de France, Paris

  • Choukroune P, ECORS Pyrénées team (1989) The ECORS Pyrenean deep seismic profile reflection data and the overall structure of an orogenic belt. Tectonics 8:23–39

    Article  Google Scholar 

  • Choukroune P, Mattauer M (1978) Tectonique des plaques et Pyrénées; sur le fonctionnement de la faille transformante Nord-Pyrénéenne; comparaisons avec des modèles actuels. Bull Soc Géol Fr 20:689–700

    Article  Google Scholar 

  • Choukroune P, Le Pichon X, Seguret M, Sibuet J-C (1973) Bay of Biscay and Pyrenees. Earth Planet Sci Lett 18:109–118

    Article  Google Scholar 

  • Clauer N, Liewig N, Ledesert B, Zwingmann H (2008) Thermal history of Triassic sandstones from the Vosges Mountains-Rhine Graben rifting area, NE France, based on K–Ar illite dating. Clay Miner 43:363–379. doi:10.1180/claymin.2008.043.3.03

    Article  Google Scholar 

  • Clerc C, Lagabrielle Y (2014) Thermal control on the modes of crustal thinning leading to mantle exhumation: insights from the Cretaceous Pyrenean hot paleomargins: thermicity and styles of passive margins. Tectonics 33:1340–1359. doi:10.1002/2013TC003471

    Article  Google Scholar 

  • Clerc C, Lagabrielle Y, Neumaier M, Reynaud J-Y, de Blanquat Saint (2012) Exhumation of subcontinental mantle rocks: evidence from ultramafic-bearing clastic deposits nearby the Lherz peridotite body, French Pyrenees. Bull Soc Géol Fr 183:443–459. doi:10.2113/gssgfbull.183.5.443

    Article  Google Scholar 

  • Darling JR, Storey CD, Engi M (2012) Allanite U–Th–Pb geochronology by laser ablation ICPMS. Chem Geol 292–293:103–115. doi:10.1016/j.chemgeo.2011.11.012

    Article  Google Scholar 

  • de Parseval P (1992) Étude minéralogique et géochimique du gisement de talc et chlorite de Trimouns. Thèse de Doctorat, Université de Toulouse III

  • de Parseval P, Fontan F, Agouy T (1997) Composition chimique des minéraux de terres rares de Trimouns (Ariège, France). C R Acad Sci Paris 324:625–630

    Google Scholar 

  • de Parseval P, Jiang S, Fontan F et al (2004) Geology and ore genesis of the Trimouns talc chlorite ore deposit. Acta Petrol Sin 20:877–886

    Google Scholar 

  • de Saint Blanquat M (1993) La faille normale ductile du Saint Barthélémy. Evolution hercynienne des massifs nord-pyrénéens considérée du point de vue de leur histoire thermique. Geodin Acta 6:59–77. doi:10.1080/09853111.1993.11105239

    Article  Google Scholar 

  • de Saint Blanquat M (1989) La faille normale ductile du massif du Saint Barthélémy (age et signification de l’extension crustale dans la Zone Nord Pyrénéenne). Thèse de Doctorat. Université de Montpellier II, France

    Google Scholar 

  • de Saint Blanquat M, Brunel M, Mattauer M (1986) Les zones de cisaillements du massif Nord Pyrénéen du Saint Barthélémy, témoins probables de l’extension crustale d’âge crétacé. C R Acad Sci Paris 303:1339–1344

    Google Scholar 

  • de Saint Blanquat M, Lardeaux JM, Brunel M (1990) Petrological arguments for high temperature extentional deformation in the Pyrenean Variscan crust (Saint Barthélémy Massif, Ariège, France). Tectonophysics 177:245–262. doi:10.1016/0040-1951(90)90284-F

    Article  Google Scholar 

  • Debon F, Enrique P, Autran A (1995) Magmatisme hercynien. In: Barnolas A, Chiron J-C (eds) Synthèse géologique et géophysique des Pyrénées—Tome 1: Cycle Hercynien, BRGM & ITGE, pp 361–499

  • Debroas EJ (1990) Le flysch noir albo-cénomanien témoin de la structuration albienne à sénonienne de la Zone nord-pyrénéenne en Bigorre (Hautes-Pyrénées, France). Bull Soc Géol Fr 8 VI 2:273–286. doi:10.2113/gssgfbull.VI.2.273

    Article  Google Scholar 

  • Delaperrière E, de Saint Blanquat M, Brunel M, Lancelot J (1994) Géochronologie U Pb sur les zircons et monazites dans le massif du Saint Barthélémy. Bull Soc Géol Fr 2:101–112

    Google Scholar 

  • Denèle Y, Paquette J-L, Olivier P, Barbey P (2012) Permian granites in the Pyrenees: the Aya pluton (Basque Country): Permian granites in the Pyrenees. Terra Nova 24:105–113. doi:10.1111/j.1365-3121.2011.01043.x

    Article  Google Scholar 

  • Denèle Y, Laumonier B, Paquette J-L, Olivier P, Gleizes G, Barbey P (2014) Timing of granite emplacement, crustal flow and gneiss dome formation in the Variscan segment of the Pyrenees. In: Schulmann, K, Martınez Catalan, JR, Lardeaux, JM, Janousek V, Oggiano G (eds) The Variscan orogeny: extent, timescale and the formation of the European crust, vol 405. Geological Society, London, Special Publications, pp 265–287. doi: 10.1144/SP405.5

  • Fallourd S, Poujol M, Boulvais P, Paquette J-L, de Saint Blanquat M, Rémy P (2014) In situ LA–ICP–MS U–Pb titanite dating of Na–Ca metasomatism in orogenic belts: the North Pyrenean example. Int J Earth Sci Geol Rundsch 103:667–682. doi:10.1007/s00531-013-0978-1

    Article  Google Scholar 

  • Fortuné J-P (1971) Contribution à l’étude minéralogique et génétique des talcs pyrénéens. Thèse de Doctorat, Université de Toulouse III, France

  • Fortuné J-P, Gavoille B, Thiébaut J (1980) Le gisement de talc de Trimouns près Luzenac (Ariège). 26ème Conférence Géologique Internationale, Gisement Français, Fascicule E10

  • Frost BR, Chamberlain KR, Schumacher JC (2000) Sphene (titanite): phase relations and role as a geochronometer. Chem Geol 172:131–148. doi:10.1016/S0009-2541(00)00240-0

    Article  Google Scholar 

  • Galindo C, Tornos F, Darbyshire DPF, Casquet C (1994) The age and origin of the barite-fluorite (Pb–Zn) veins of the Sierra del Guadarrama (Spanish Central System, Spain): a radiogenic (Nd, Sr) and stable isotope study. Chem Geol 112:351–364. doi:10.1016/0009-2541(94)90034-5

    Article  Google Scholar 

  • Gasquet D, Bertrand J-M, Paquette J-L, Lehmann J, Ratzov G, Ascenção Guedes R, Tiepolo M, Coullier A-M, Scaillet S, Nomade S (2010) Miocene to Messinian deformation and hydrothermal activity in a pre-Alpine basement massif of the French western Alps: new U–Th–Pb and argon ages from the Lauzière massif. Bull Soc Géol Fr 181:227–241. doi:10.2113/gssgfbull.181.3.227

    Article  Google Scholar 

  • Golberg JM, Leyreloup AF (1990) High temperature-low pressure Cretaceous metamorphism related to crustal thinning (Eastern North Pyrenean Zone, France). Contrib Miner Petrol 104:194–207. doi:10.1007/BF00306443

    Article  Google Scholar 

  • Golberg J-M, Maluski H (1988) Données nouvelles et mise au point sur l’âge du métamorphisme pyrénéen. C R Acad Sci Paris 306:429–435.

    Google Scholar 

  • Gong Z, Langereis CG, Mullender TAT (2008) The rotation of Iberia during the Aptian and the opening of the Bay of Biscay. Earth Planet Sci Lett 273:80–93. doi:10.1016/j.epsl.2008.06.016

    Article  Google Scholar 

  • Gregory CJ, Rubatto D, Allen CM, Williams IS, Hermann J, Ireland T (2007) Allanite micro-geochronology: a LA–ICP–MS and SHRIMP U–Th–Pb study. Chem Geol 245:162–182. doi:10.1016/j.chemgeo.2007.07.029

    Article  Google Scholar 

  • Höffler P, Vinandy G (2000) Talc de Luzenac: trimouns, un engagement environnemental. Chronique de la recherche minière 541:47–55

    Google Scholar 

  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem Geol 211:47–69. doi:10.1016/j.chemgeo.2004.06.017

    Article  Google Scholar 

  • Jammes S, Manatschal G, Lavier L, Masini E (2009) Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: example of the western Pyrenees: extreme crustal thinning in the Pyrenees. Tectonics. doi:10.1029/2008TC002406

    Google Scholar 

  • Klötzli E, Klötzli U, Kosler J (2007) A possible laser ablation xenotime U–Pb age standard: reproducibility and accuracy. Geochim Cosmochim Acta 71:A495. doi:10.1016/j.gca.2007.06.019

    Google Scholar 

  • Lagabrielle Y, Bodinier J-L (2008) Submarine reworking of exhumed subcontinental mantle rocks: field evidence from the Lherz peridotites, French Pyrenees. Terra Nova 20:11–21. doi:10.1111/j.1365-3121.2007.00781.x

    Article  Google Scholar 

  • Lagabrielle Y, Labaume P, de Saint Blanquat M (2010) Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): Insights from the geological setting of the lherzolite bodies. Tectonics. doi:10.1029/2009TC002588

    Google Scholar 

  • Lago M, Arranz E, Pocovi A, Galé C, Gil-Imaz A (2004) Permian magmatism and basin dynamics in the southern Pyrenees: a record of the transition from late Variscan transtension to early Alpine extension. Geol Soc Lond Special Publications 223:439–464. doi:10.1144/GSL.SP.2004.223.01.19

    Article  Google Scholar 

  • Le Pichon X, Bonnin J, Sibuet J-C (1970) La faille nord-pyrénéenne: faille transformante liée à l’ouverture du golfe de Gascogne. C R Hebd Seances Acad Sci Ser D 271:1941–1944

    Google Scholar 

  • Ludwig KR (1998) On the treatment of concordant uranium-lead ages. Geochim Cosmochim Acta 62:665–676. doi:10.1016/S0016-7037(98)00059-3

    Article  Google Scholar 

  • Marotta AM, Spalla MI (2007) Permian-Triassic high thermal regime in the Alps: result of late Variscan collapse or continental rifting? Validation by numerical modeling. Tectonics 26:TC4016. doi:10.1029/2006TC002047

    Article  Google Scholar 

  • Masini E, Manatschal G, Tugend J, Mohn G, Flament J-M (2014) The tectono-sedimentary evolution of a hyper-extended rift basin: the example of the Arzacq-Mauléon rift system (Western Pyrenees, SW France). Int J Earth Sci Geol Rundsch 103:1569–1596. doi:10.1007/s00531-014-1023-8

    Article  Google Scholar 

  • Meyer M, Brockamp O, Clauer N, Renk A, Zuther M (2000) Further evidence for a Jurassic mineralizing event in central Europe: K–Ar dating of hydrothermal alteration and fluid inclusion systematics in wall rocks of the Käfersteige fluorite vein deposit in the northern Black Forest, Germany. Miner Deposita 35:754–761. doi:10.1007/s001260050277

    Article  Google Scholar 

  • Moine B, Gavoille B, Thiébaut J (1982a) Géochimie des transformations métasomatiques à l’origine du gisement de talc et chlorite de Trimouns—I. Mobilité des éléments et zonalités. Bull Minéral 105:62–75

    Google Scholar 

  • Moine B, Gavoille B, Thiébaut J (1982b) Géochimie des transformations métasomatiques à l’origine du gisement de talc et chlorite de Trimouns—II. Approche des conditions physico-chimiques de la métasomatose. Bull Minéral 105:76–88

    Google Scholar 

  • Moine B, Fortuné J-P, Moreau P, Viguier F (1989) Comparative mineralogy, geochemistry and conditions of formation of two metasomatic talc and chlorite deposits: trimouns (Pyrenees, France) and Rabenwald (Eastern Alps, Austria). Econ Geol 84:1398–1416. doi:10.2113/gsecongeo.84.5.1398

    Article  Google Scholar 

  • Monchoux P, Fontan F, de Parseval P, Martin RF, Wang RC (2006) Igneous albitite dikes in orogenic lherzolites, western Pyrénées, France: a possible source for corundum and alkali feldspar xenocrysts in basaltic terranes. I. Mineralogical Associations. Can Mineral 44:817–842. doi:10.2113/gscanmin.44.4.817

    Article  Google Scholar 

  • Montigny R, Azambre B, Rossy M, Thuizat R (1986) K–Ar study of cretaceous magmatism and metamorphism in the Pyrénées: age and length of rotation of the Iberian peninsula. Tectonophysics 129:257–273

    Article  Google Scholar 

  • Mossman JR, Clauer N, Liewig N (1992) Dating thermal anomalies in sedimentary basins: the diagenetic history of clays minerals in the Triassic sandstones of the Paris basin, France. Clay Miner 27:211–226. doi:10.1180/claymin.1992.027.2.06

    Article  Google Scholar 

  • Muñoz JA (1992) Evolution of a continental collision belt: ECORS-Pyrenees crustal balanced cross-section. In: McClay KR (ed) Thrust tectonics. Chapman and Hall, London, pp 235–246

    Chapter  Google Scholar 

  • Muñoz M, Premo WR, Courjault-Radé P (2005) Sm–Nd dating of fluorite from the worldclass Montroc fluorite deposit, southern Massif Central, France. Miner Depos 39:970–975. doi:10.1007/s00126-004-0453-9

    Article  Google Scholar 

  • Olivet J-L (1996) La cinématique de la plaque ibérique. Bull Cent Rech Explor Prod Elf Aquitaine 20:131–195

    Google Scholar 

  • Paquette J-L, Tiepolo M (2007) High resolution (5 μm) U–Th–Pb isotope dating of monazite with excimer laser ablation (ELA)-ICPMS. Chem Geol 240:222–237. doi:10.1016/j.chemgeo.2007.02.014

    Article  Google Scholar 

  • Paquette J-L, Piro J-L, Devidal J-L, Bosse V, Didier A (2014) Sensitivity enhancement in LA–ICP–MS by N2 addition to carrier gas: application to radiometric dating of U–Th–bearing minerals. Agil ICP–MS J 58:4–5

    Google Scholar 

  • Passchier CW (1982) Pseudotachylyte and the development of ultramylonite bands in the Saint Barthélemy Massif. J Struct Geol 4:69–79. doi:10.1016/0191-8141(82)90008-6

    Article  Google Scholar 

  • Patrier P, Beaufort D, Bril H, Bonhomme M, Fouillac AM, Aumatre R (1997) Alteration-mineralization at the Bernardan U deposit (Western Marche, France); the contribution of alteration petrology and crystal chemistry of secondary phases to a new genetic model. Econ Geol 92:448–467. doi:10.2113/gsecongeo.92.4.448

    Article  Google Scholar 

  • Pedersen RB, Dunning GR, Robins B (1989) U–Pb ages of nepheline syenite pegmatites from the Seiland Magmatic Province, N Norway. In: Gayer RA (ed) The Caledonide geology of Scandinavia. Graham and Trotman, London, pp 3–8

    Chapter  Google Scholar 

  • Pin C, Vielzeuf D (1983) Granulites and related rocks in Variscan median Europe: a dualistic interpretation. Tectonophysics 93:47–74

    Article  Google Scholar 

  • Pin C, Paquette JL, Monchoux P, Hammouda T (2001) First field-scale occurrence of Si–Al–Na–rich low-degree partial melts from the upper mantle. Geology 29:451–454. doi:10.1130/0091-7613(2001)029<0451:FFSOOS>2.0.CO;2

    Article  Google Scholar 

  • Pin C, Monchoux P, Paquette J-L, Azambre B, Wang RC, Martin RF (2006) Igneous albitite dikes in orogenic lherzolites, western Pyrénées, France: a possible source for corundum and alkali feldspar xenocrysts in basaltic terranes. II. Geochemical and petrogenetic considerations. Can Mineral 44:843–856. doi:10.2113/gscanmin.44.4.843

    Article  Google Scholar 

  • Piqué À, Canals À, Grandia F, Banks DA (2008) Mesozoic fluorite veins in NE Spain record regional base metal-rich brine circulation through basin and basement during extensional events. Chem Geol 257:139–152. doi:10.1016/j.chemgeo.2008.08.028

    Article  Google Scholar 

  • Poujol M, Boulvais P, Kosler J (2010) Regional-scale Cretaceous albitization in the Pyrenees: evidence from in situ U–Th–Pb dating of monazite, titanite and zircon. J Geol Soc 167:751–767. doi:10.1144/0016-76492009-144

    Article  Google Scholar 

  • Raguin E (1958) Conceptions sur la genèse du talc de Corneilla. Réunion extraordinaire dans les Pyrénées Orientales. Bull Soc Géol Fr 6:925

    Google Scholar 

  • Roberts MP, Pin C, Clemens JD, Paquette J-L (2000) Petrogenesis of mafic to felsic plutonic rock associations: the calc-alkaline Quérigut complex, French Pyrenees. J Petrol 41:809–844. doi:10.1093/petrology/41.6.809

    Article  Google Scholar 

  • Sánchez V, Cardellach E, Corbella M et al (2010) Variability in fluid sources in the fluorite deposits from Asturias (N Spain): Further evidences from REE, radiogenic (Sr, Sm, Nd) and stable (S, C, O) isotope data. Ore Geol Rev 37:87–100. doi:10.1016/j.oregeorev.2009.12.001

    Article  Google Scholar 

  • Schärer U, de Parseval P, Polvé M, de Saint Blanquat M (1999) Formation of the Trimouns talc chlorite deposit from persistent hydrothermal activity between 112 and 97 Ma. Terra Nova 11:30–37. doi:10.1046/j.1365-3121.1999.00224.x

    Article  Google Scholar 

  • Séguret M (1972) Etude tectonique des nappes et séries décollées de la partie centrale du versant sud des Pyrénées: caractère synsédimentaire, rôle de la compression et de la gravité. Thèse de Doctorat. Université de Montpellier II, France

    Google Scholar 

  • Sibuet J-C, Srivastava SP, Spakman W (2004) Pyrenean orogeny and plate kinematics. J Geophys Res. doi:10.1029/2003JB002514

    Google Scholar 

  • Spencer KJ, Hacker BR, Kylander-Clark ARC, Andersen TB, Cottle JM, Stearns MA, Poletti JE, Seward GCE (2013) Campaign-style titanite U–Pb dating by laser-ablation ICP: implications for crustal flow, phase transformations and titanite closure. Chem Geol 341:84–101. doi:10.1016/j.chemgeo.2012.11.012

    Article  Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221. doi:10.1016/0012-821X(75)90088-6

    Article  Google Scholar 

  • Storey CD, Jeffries TE, Smith M (2006) Common lead-corrected laser ablation ICP–MS U–Pb systematics and geochronology of titanite. Chem Geol 227:37–52. doi:10.1016/j.chemgeo.2005.09.003

    Article  Google Scholar 

  • Sun J, Yang J, Wu F, Xie L, Yang Y, Liu Z, Li X (2012) In situ U-Pb dating of titanite by LA-ICPMS. Chinese Science Bulletin 57:2506–2516. doi:10.1007/s11434-012-5177-0  

  • Tucholke BE, Sibuet J-C (2012) Problematic plate reconstruction. Nat Geosci 5:676–677. doi:10.1038/ngeo1596

    Article  Google Scholar 

  • Van Achterbergh E, Ryan CG, Jackson SE, Griffin WL (2001) Data reduction software for LA–ICP–MS: appendix. In: Sylvester PJ (ed) Laser ablation-ICP-mass spectrometry in the earth sciences: principles and applications. Mineralogical Association of Canada, Ottawa, pp 239–243

    Google Scholar 

  • Vidal O, Parra T, Trotet F (2001) A thermodynamic model for Fe–Mg aluminous chlorite using data from phase equilibrium experiments and natural pelitic assemblages in the 100° to 600°C, 1 to 25 kb range. Am J Sci 301:557–592

    Article  Google Scholar 

  • Vielzeuf D (1984) Relations de phases dans le faciès granulitique et implications géodynamiques. L’exemple des granulites des Pyrénées. Thèse de Doctorat. Université de Clermont II, France

    Google Scholar 

  • Wiewióra A, Weiss Z (1990) Crystallochemical classifications of phyllosilicates based on the unified system of projection of chemical composition: II. The chlorite group. Clay Miner 25:83–92

    Article  Google Scholar 

  • Zack T, Stockli DF, Luvizotto GL, Barth MG, Belousova H, Wolfe MR, Hinton RW (2011) In situ U–Pb rutile dating by LA–ICP–MS: 208Pb correction and prospects for geological applications. Contrib Miner Petrol 162:515–530. doi:10.1007/s00410-011-0609-4

    Article  Google Scholar 

  • Ziegler PA, Dèzes P (2006) Crustal evolution of Western and Central Europe. Geol Soc Lond Mem 32:43–56. doi:10.1144/GSL.MEM.2006.032.01.03

    Article  Google Scholar 

  • Zwart HJ (1954) La géologie du massif du Saint-Barthélémy, Pyrénées, France. Thèse de Doctorat, Université de Leiden, Pays-Bas

Download references

Acknowledgments

This study was financed by the “Association Nationale de la Recherche et de la Technologie” (ANRT), through a collaborative project between Imerys talc and the GET laboratory, the CNRS, and the University of Toulouse, and by the “Agence Nationale de la Recherche” (ANR) PYRAMID project. We would like to thank everyone who helped with facilitated the preparation of the samples, especially the technical staff of the GET laboratory (Jean François Ména, Ludovic Menjot and Fabienne de Parseval). We thank Frederic Bec and Guy Bernadi for their experience and mineralogical skills and Sara Mullin for improving the English content. Last but not least, Massimo Tiepolo and an anonymous reviewer are thanked for their constructive comments and Ingo Braun for his editorial handling of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Boutin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boutin, A., de Saint Blanquat, M., Poujol, M. et al. Succession of Permian and Mesozoic metasomatic events in the eastern Pyrenees with emphasis on the Trimouns talc–chlorite deposit. Int J Earth Sci (Geol Rundsch) 105, 747–770 (2016). https://doi.org/10.1007/s00531-015-1223-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-015-1223-x

Keywords

Navigation