Skip to main content
Log in

Extracellular adenosine induces apoptosis in Caco-2 human colonic cancer cells by activating caspase-9/-3 via A2a adenosine receptors

  • Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Extracellular adenosine has been shown to induce apoptosis in a variety of cells via an intrinsic pathway linked to adenosine uptake into cells and the ensuing signaling cascades and an extrinsic pathway linked to adenosine receptors. The present study was designed to understand the mechanism underlying adenosine-induced apoptosis of Caco-2 human colonic cancer cells.

Methods

To observe cell viability, an MTT assay was carried out in Caco-2 cells untransfected or transfected with the A2a adenosine receptor pcDNA3.1. Apoptotic cell death was assessed with flow cytometry using propidium iodide and annexin V and internucleosomal DNA fragmentation analysis. Activities of caspase-3, -8, and -9 were measured using a caspase fluorometric assay kit. Mitochondrial membrane potentials were monitored using a DePsipher kit. Expression of adenosine receptors was examined with the reverse transcription-polymerase chain reaction (RT-PCR) method.

Results

Extracellular adenosine induced Caco-2 cell apoptosis in a concentration-dependent (1–20 mM) and treatment time-dependent (24–72 h) manner. The adenosine effect was inhibited by DMPX, an inhibitor of A2a adenosine receptors and SQ22536, an inhibitor of adenylate cyclase. CGS21680, an agonist of A2a adenosine receptors, and forskolin, an adenylate cyclase activator, mimicked the adenosine action. Caco-2 cell death was still induced by overexpressing A2a adenosine receptors, and adenosine further promoted the cell death. Adenosine disrupted mitochondrial membrane potentials and activated caspase-9 and -3, but not caspase-8.

Conclusions

Extracellular adenosine induces apoptosis in Caco-2 cells by activating caspase-9 and the downstream effector caspase caspase-3 in association with mitochondrial damage via A2a adenosine receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, et al. Human ICE/CED-3 protease nomenclature. Cell 1996;87:171.

    Article  PubMed  CAS  Google Scholar 

  2. Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 1999;68:383–424.

    Article  PubMed  CAS  Google Scholar 

  3. Kroemer G. The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med 1997;3:614–620.

    Article  PubMed  CAS  Google Scholar 

  4. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998;281:1309–1312.

    Article  PubMed  CAS  Google Scholar 

  5. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997;91:479–489.

    Article  PubMed  CAS  Google Scholar 

  6. Zou H, Li Y, Liu X, Wang X. An APAF-1.-cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 1999;274:11549–11556.

    Article  PubMed  CAS  Google Scholar 

  7. Mori M, Nishizaki T, Okada Y. Protective effect of adenosine on the anoxic damage of hippocampal slice. Neuroscience 1992;46:301–307.

    Article  PubMed  CAS  Google Scholar 

  8. Schrier SM, van Tilburg EW, van der Meulen H, Ijzerman AP, Mulder GJ, Nagelkerke JF. Extracellular adenosine-induced apoptosis in mouse neuroblastoma cells: studies on involvement of adenosine receptors and adenosine uptake. Biochem Pharmacol 2001;61:417–425.

    Article  PubMed  CAS  Google Scholar 

  9. Barry CP, Lind SE. Adenosine-mediated killing of cultured epithelial cancer cells. Cancer Res 2000;60:1887–1894.

    PubMed  CAS  Google Scholar 

  10. Saitoh M, Nagai K, Nakagawa K, Yamamura T, Yamamoto S, Nishizaki T. Adenosine induces apoptosis in the human gastric cancer cells via an intrinsic pathway relevant to activation of AMP-activated protein kinase. Biochem Pharmacol 2004;67:2005–2011.

    Article  PubMed  CAS  Google Scholar 

  11. Yang D, Yaguchi T, Yamamoto H, Nishizaki T. Intracellularly transported adenosine induces apoptosis in HuH-7 human hepatoma cells by downregulating c-FLIP expression causing caspase-3/-8 activation. Biochem Pharmacol 2007;73:1665–1675.

    Article  PubMed  CAS  Google Scholar 

  12. Peyot ML, Gadeau AP, Dandre F, Belloc I, Dupuch F, Desgranges C. Extracellular adenosine induces apoptosis of human arterial smooth muscle cells via A2b-purinoceptor. Circ Res 2000;86:76–85.

    PubMed  CAS  Google Scholar 

  13. Vintermyr OK, Gjertsen BT, Lanotte M, Doskeland SO. Microinjected catalytic subunit of cAMP-dependent protein kinase induces apoptosis in myeloid leukemia (IPC-81) cells. Exp Cell Res 1993;206:157–161.

    Article  PubMed  CAS  Google Scholar 

  14. Boe R, Gjertsen BT, Doskeland SO, Vintermyr OK. 8-ChlorocAMP induces apoptotic cell death in a human mammary carcinoma cell (MCF-7) line. Br J Cancer 1995;72:1151–1159.

    PubMed  CAS  Google Scholar 

  15. Pratt RM, Martin GR. Epithelial cell death and cyclic AMP increase during palatal development. Proc Natl Acad Sci U S A 1975;72:874–877.

    Article  PubMed  CAS  Google Scholar 

  16. Zwain IH, Amato P. cAMP-induced apoptosis in granulosa cells is associated with up-regulation of P53 and bax and downregulation of clusterin. Endocr Res 2001;27:233–249.

    Article  PubMed  CAS  Google Scholar 

  17. Mentz F, Mossalayi MD, Ouaaz F, Debre P. Involvement of cAMP in CD3 T cell receptor complex- and CD2-mediated apoptosis of human thymocytes. Eur J Immunol 1995;25:1798–1801.

    Article  PubMed  CAS  Google Scholar 

  18. Lomo J, Blomhoff HK, Beiske K, Stokke T, Smeland EB. TGF-β1 and cyclic AMP promote apoptosis in resting human B lymphocytes. J Immunol 1995;154:1634–1643.

    PubMed  CAS  Google Scholar 

  19. Aoshiba K, Nagai A, Konno K. Erythromycin shortens neutrophil survival by accelerating apoptosis. Antimicrob Agents Chemother 1995;39:872–877.

    PubMed  CAS  Google Scholar 

  20. Grbovic O, Jovic V, Ruzdijic S, Pejanovic V, Rakic L, Kanazir S. 8-Cl-cAMP affects glioma cell-cycle kinetics and selectively induces apoptosis. Cancer Invest 2002;20:972–982.

    Article  PubMed  CAS  Google Scholar 

  21. Cummings BS, Schnellmann RG. Cisplatin-induced renal cell apoptosis: caspase 3-dependent and -independent pathways. J Pharmacol Exp Ther 2002;302:8–17.

    Article  PubMed  CAS  Google Scholar 

  22. Vanags DM, Porn-Ares MI, Coppola S, Burgess DH, Orrenius S. Protease involvement in fodrin cleavage and phosphatidylserine exposure in apoptosis. J Biol Chem 1996;271:31075–31085.

    Article  PubMed  CAS  Google Scholar 

  23. Pietra G, Mortarini R, Parmiani G, Anichini A. Phases of apoptosis of melanoma cells, but not of normal melanocytes, differently affect maturation of myeloid dendritic cells. Cancer Res 2001;61:8218–8226.

    PubMed  CAS  Google Scholar 

  24. Meester BJ, Shankley NP, Welsh NJ, Meijler FL, Black JW. Pharmacological analysis of the activity of the adenosine uptake inhibitor, dipyridamole, on the sinoatrial and atrioventricular nodes of the guinea-pig. Br J Pharmacol 1998;124:729–741.

    Article  PubMed  CAS  Google Scholar 

  25. Wiesner JB, Ugarkar BG, Castellino AJ, Barankiewicz J, Dumas DP, Gruber HE, et al. Adenosine kinase inhibitors as a novel approach to anticonvulsant therapy. J Pharmacol Exp Ther 1999;289:1669–1677.

    PubMed  CAS  Google Scholar 

  26. Chen YI, Choi JK, Jenkins BG. Mapping interactions between dopamine and adenosine A2a receptors using pharmacologic MRI. Synapse 2005;55:80–88.

    Article  PubMed  CAS  Google Scholar 

  27. Bauman LA, Mahle CD, Boissard CG, Gribkoff VK. Age-dependence of effects of A1 adenosine receptor antagonism in rat hippocampal slices. J Neurophysiol 1992;68:629–638.

    PubMed  CAS  Google Scholar 

  28. Trincavelli ML, Marroni M, Tuscano D, Ceruti S, Mazzola A, Mitro N, et al. Regulation of A2B adenosine receptor functioning by tumour necrosis factor-α in human astroglial cells. J Neurochem 2004;91:1180–1190.

    Article  PubMed  CAS  Google Scholar 

  29. Li AH, Moro S, Forsyth N, Melman N, Ji XD, Jacobson KA. Synthesis, CoMFA analysis, and receptor docking of 3,5-diacyl-2,4-dialkylpyridine derivatives as selective A3 adenosine receptor antagonists. J Med Chem 1999;42:706–721.

    Article  PubMed  CAS  Google Scholar 

  30. Cunha RA, Constantino MD, Ribeiro JA. ZM241385 is an antagonist of the facilitatory responses produced by the A2A adenosine receptor agonists CGS21680 and HENECA in the rat hippocampus. Br J Pharmacol 1997;122:1279–1284.

    Article  PubMed  CAS  Google Scholar 

  31. Fredholm BB, Arslan G, Halldner L, Kull B, Schulte G, Wasserman W. Structure and function of adenosine receptors and their genes. Naunyn Schmiedebergs Arch Pharmacol 2000;362:364–374.

    Article  PubMed  CAS  Google Scholar 

  32. Turcato S, Clapp LH. Effects of the adenylyl cyclase inhibitor SQ22536 on iloprost-induced vasorelaxation and cyclic AMP elevation in isolated guinea-pig aorta. Br J Pharmacol 1999;126:845–847.

    Article  PubMed  CAS  Google Scholar 

  33. Wei T, Chen C, Hou J, Zhao B, Xin W, Mori A. The antioxidant EPC-K1 attenuates NO-induced mitochondrial dysfunction, lipid peroxidation and apoptosis in cerebellar granule cells. Toxicology 1999;134:117–126.

    Article  PubMed  CAS  Google Scholar 

  34. Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 1996;86:147–157.

    Article  PubMed  CAS  Google Scholar 

  35. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature (Lond) 1999;397:441–446.

    Article  CAS  Google Scholar 

  36. Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000;102:33–42.

    Article  PubMed  CAS  Google Scholar 

  37. Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE, et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000;102:43–53.

    Article  PubMed  CAS  Google Scholar 

  38. Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 2001;8:613–621.

    Article  PubMed  CAS  Google Scholar 

  39. Hegde R, Srinivasula SM, Zhang Z, Wassell R, Mukattash R, Cilenti L, et al. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J Biol Chem 2002;277:432–438.

    Article  PubMed  CAS  Google Scholar 

  40. Grbovic O, Jovic V, Ruzdijic S, Pejanovic V, Rakic L, Kanazir S. 8-Cl-cAMP affects glioma cell-cycle kinetics and selectively induces apoptosis. Cancer Invest 2002;20:972–982.

    Article  PubMed  CAS  Google Scholar 

  41. Martin MC, Dransfield I, Haslett C, Rossi AG. Cyclic AMP regulation of neutrophil apoptosis occurs via a novel protein kinase A-independent signaling pathway. J Biol Chem 2001;276:45041–45050.

    Article  PubMed  CAS  Google Scholar 

  42. Ding HF, McGill G, Rowan S, Schmaltz C, Shimamura A, Fisher DE. Oncogene-dependent regulation of caspase activation by p53 protein in a cell-free system. J Biol Chem 1998;273:28378–28383.

    Article  PubMed  CAS  Google Scholar 

  43. Parvathenani LK, Buescher ES, Chacon-Cruz E, Beebe SJ. Type I cAMP-dependent protein kinase delays apoptosis in human neutrophils at a site upstream of caspase-3. J Biol Chem 1998;273:6736–6743.

    Article  PubMed  CAS  Google Scholar 

  44. Yusta B, Boushey RP, Drucker DJ. The glucagon-like peptide-2 receptor mediates direct inhibition of cellular apoptosis via a cAMP-dependent protein kinase-independent pathway. J Biol Chem 2000;275:35345–35352.

    Article  PubMed  CAS  Google Scholar 

  45. Suzuki A, Kawano H, Hayashida M, Hayasaki Y, Tsutomi Y, Akahane K. Procaspase 3/p21 complex formation to resist fasmediated cell death is initiated as a result of the phosphorylation of p21 by protein kinase A. Cell Death Differ 2000;7:721–728.

    Article  PubMed  CAS  Google Scholar 

  46. Li J, Yang S, Billiar TR. Cyclic nucleotides suppress tumor necrosis factor α-mediated apoptosis by inhibiting caspase activation and cytochrome c release in primary hepatocytes via a mechanism independent of Akt activation. J Biol Chem 2000;275:13026–13034.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yasuda, Y., Saito, M., Yamamura, T. et al. Extracellular adenosine induces apoptosis in Caco-2 human colonic cancer cells by activating caspase-9/-3 via A2a adenosine receptors. J Gastroenterol 44, 56–65 (2009). https://doi.org/10.1007/s00535-008-2273-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-008-2273-7

Key words

Navigation