Skip to main content

Advertisement

Log in

Angiotensin II type 1 receptor antagonist prevents hepatic carcinoma in rats with nonalcoholic steatohepatitis

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Angiotensin II type 1 receptor blockers (ARBs) have been reported to attenuate hepatic fibrosis in non-alcoholic steatohepatitis (NASH). However, it is uncertain whether ARBs prevent hepatocarcinogenesis in NASH even after hepatic fibrosis has developed.

Methods

Male Wistar rats were fed with a choline-deficient, l-amino acid-defined (CDAA) diet for 24 weeks, and then fed with the CDAA diet with telmisartan (2 mg/kg/day), a novel ARB, or vehicle for another 24 weeks. The liver histology and the expression of genes and proteins related to angiogenesis were investigated.

Results

The 24-week CDAA diet induced liver cirrhosis. The 48-week CDAA diet exacerbated liver cirrhosis, and developed hepatocellular carcinoma (HCC) in 54.6 % of the rats concurrently with increases of hypoxia-inducible factor-1α (HIF-1α) protein and vascular endothelial growth factor (VEGF) mRNA, which are potent angiogenic factors in the liver. Telmisartan inhibited hepatic fibrosis and preneoplastic lesions and prevented the development of HCC along with inducing decreases in HIF-1α protein and VEGF mRNA.

Conclusions

These data indicated that telmisartan may prevent hepatocarcinogenesis through the inhibition of hepatic angiogenesis even after liver cirrhosis has been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ALT:

Alanine aminotransferase

ARB:

Angiotensin II type 1 receptor blocker

α-SMA:

α-Smooth muscle actin

CDAA:

Choline-deficient l-amino acid-defined

CSAA:

Choline-sufficient, l-amino acid-defined

CTGF:

Connective tissue growth factor

ICAM-1:

Intercellular adhesion molecule-1

GST-P:

The placental form of glutathione-S-transferase

HIF-1α:

Hypoxia-inducible factor-1α

NAFLD:

Non-alcoholic fatty liver disease

NASH:

Non-alcoholic steatohepatitis

PPAR:

Peroxisome proliferator-activated receptor

RAS:

Renin–angiotensin system

ROS:

Reactive oxygen species

TGF-β1:

Transforming growth factor-β1

TNF-α:

Tumor necrosis factor-α

VEGF:

Vascular endothelial growth factor

References

  1. Bedogni G, Miglioli L, Masutti F, Tiribelli C, Marchesini G, Bellentani S. Prevalence of and risk factors for nonalcoholic fatty liver disease: the Dionysos nutrition and liver study. Hepatology. 2005;42:44–52.

    Article  PubMed  Google Scholar 

  2. Lazo M, Clark JM. The epidemiology of nonalcoholic fatty liver disease: a global perspective. Semin Liver Dis. 2008;28:339–50.

    Article  PubMed  Google Scholar 

  3. Shimada M, Hashimoto E, Taniai M, Hasegawa K, Okuda H, Hayashi N, et al. Hepatocellular carcinoma in patients with non-alcoholic steatohepatitis. J Hepatol. 2002;37:154–60.

    Article  PubMed  Google Scholar 

  4. Chen CL, Yang HI, Yang WS, Liu CJ, Chen PJ, You SL, et al. Metabolic factors and risk of hepatocellular carcinoma by chronic hepatitis B/C infection: a follow-up study in Taiwan. Gastroenterology. 2008;135:111–21.

    Article  PubMed  CAS  Google Scholar 

  5. Lagiou P, Kuper H, Stuver SO, Tzonou A, Trichopoulos D, Adami HO. Role of diabetes mellitus in the etiology of hepatocellular carcinoma. J Natl Cancer Inst. 2000;92:1096–9.

    Article  PubMed  CAS  Google Scholar 

  6. Pieruzzi F, Abassi ZA, Keiser HR. Expression of renin–angiotensin system components in the heart, kidneys, and lungs of rats with experimental heart failure. Circulation. 1995;92:3105–12.

    Article  PubMed  CAS  Google Scholar 

  7. Kamezaki F, Tasaki H, Yamashita K, Shibata K, Hirakawa N, Tsutsui M, et al. Angiotensin receptor blocker improves coronary flow velocity reserve in hypertensive patients: comparison with calcium channel blocker. Hypertens Res. 2007;30:699–706.

    Article  PubMed  CAS  Google Scholar 

  8. Stock P, Liefeldt L, Paul M, Ganten D. Local renin–angiotensin systems in cardiovascular tissues: localization and functional role. Cardiology. 1995;86(Suppl 1):2–8.

    Article  PubMed  CAS  Google Scholar 

  9. Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Nakatani T, et al. Angiotensin-II type 1 receptor interaction is a major regulator for liver fibrosis development in rats. Hepatology. 2001;34:745–50.

    Article  PubMed  CAS  Google Scholar 

  10. Bataller R, Sancho-Bru P, Gines P, Lora JM, Al-Garawi A, Sole M, et al. Activated human hepatic stellate cells express the renin–angiotensin system and synthesize angiotensin II. Gastroenterology. 2003;125:117–25.

    Article  PubMed  CAS  Google Scholar 

  11. Helmy A, Jalan R, Newby DE, Hayes PC, Webb DJ. Role of angiotensin II in regulation of basal and sympathetically stimulated vascular tone in early and advanced cirrhosis. Gastroenterology. 2000;118:565–72.

    Article  PubMed  CAS  Google Scholar 

  12. Yokohama S, Yoneda M, Haneda M, Okamoto S, Okada M, Aso K, et al. Therapeutic efficacy of an angiotensin II receptor antagonist in patients with nonalcoholic steatohepatitis. Hepatology. 2004;40:1222–5.

    Article  PubMed  CAS  Google Scholar 

  13. Yokohama S, Tokusashi Y, Nakamura K, Tamaki Y, Okamoto S, Okada M, et al. Inhibitory effect of angiotensin II receptor antagonist on hepatic stellate cell activation in non-alcoholic steatohepatitis. World J Gastroenterol. 2006;12:322–6.

    PubMed  CAS  Google Scholar 

  14. Hirose A, Ono M, Saibara T, Nozaki Y, Masuda K, Yoshioka A, et al. Angiotensin II type 1 receptor blocker inhibits fibrosis in rat nonalcoholic steatohepatitis. Hepatology. 2007;45:1375–81.

    Article  PubMed  CAS  Google Scholar 

  15. Jin H, Yamamoto N, Uchida K, Terai S, Sakaida I. Telmisartan prevents hepatic fibrosis and enzyme-altered lesions in liver cirrhosis rat induced by a choline-deficient L-amino acid-defined diet. Biochem Biophys Res Commun. 2007;364:801–7.

    Article  PubMed  CAS  Google Scholar 

  16. Yoshiji H, Kuriyama S, Noguchi R, Yoshii J, Ikenaka Y, Yanase K, et al. Angiopoietin 2 displays a vascular endothelial growth factor dependent synergistic effect in hepatocellular carcinoma development in mice. Gut. 2005;54:1768–75.

    Article  PubMed  CAS  Google Scholar 

  17. Liu Y, Poon RT, Li Q, Kok TW, Lau C, Fan ST. Both antiangiogenesis- and angiogenesis-independent effects are responsible for hepatocellular carcinoma growth arrest by tyrosine kinase inhibitor PTK787/ZK222584. Cancer Res. 2005;65:3691–9.

    Article  PubMed  CAS  Google Scholar 

  18. Yoshiji H, Kuriyama S, Noguchi R, Ikenaka Y, Kitade M, Kaji K, et al. Angiotensin-II and vascular endothelial growth factor interaction plays an important role in rat liver fibrosis development. Hepatol Res. 2006;36:124–9.

    Article  PubMed  CAS  Google Scholar 

  19. Ghoshal AK, Farber E. The induction of liver cancer by dietary deficiency of choline and methionine without added carcinogens. Carcinogenesis. 1984;5:1367–70.

    Article  PubMed  CAS  Google Scholar 

  20. Squire RA, Levitt MH. Report of a workshop on classification of specific hepatocellular lesions in rats. Cancer Res. 1975;35:3214–23.

    PubMed  CAS  Google Scholar 

  21. Brunt EM. Nonalcoholic steatohepatitis: definition and pathology. Semin Liver Dis. 2001;21:3–16.

    Article  PubMed  CAS  Google Scholar 

  22. Ascha MS, Hanouneh IA, Lopez R, Tamimi TA, Feldstein AF, Zein NN. The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. Hepatology. 2010;51:1972–8.

    Article  PubMed  Google Scholar 

  23. Morgan TR, Mandayam S, Jamal MM, Jamal MM. Alcohol and hepatocellular carcinoma. Gastroenterology. 2004;127:S87–96.

    Article  PubMed  CAS  Google Scholar 

  24. Nguyen VT, Law MG, Dore GJ. Hepatitis B-related hepatocellular carcinoma: epidemiological characteristics and disease burden. J Viral Hepat. 2009;16:453–63.

    Article  PubMed  CAS  Google Scholar 

  25. Sakaida I, Matsumura Y, Kubota M, Kayano K, Takenaka K, Okita K. The prolyl 4-hydroxylase inhibitor HOE 077 prevents activation of Ito cells, reducing procollagen gene expression in rat liver fibrosis induced by choline-deficient l-amino acid-defined diet. Hepatology. 1996;23:755–63.

    PubMed  CAS  Google Scholar 

  26. Ghoshal AK, Ahluwalia M, Farber E. The rapid induction of liver cell death in rats fed a choline-deficient methionine-low diet. Am J Pathol. 1983;113:309–14.

    PubMed  CAS  Google Scholar 

  27. Yao ZM, Vance DE. The active synthesis of phosphatidylcholine is required for very low density lipoprotein secretion from rat hepatocytes. J Biol Chem. 1988;263:2998–3004.

    PubMed  CAS  Google Scholar 

  28. Nakae D, Yoshiji H, Maruyama H, Kinugasa T, Denda A, Konishi Y. Production of both 8-hydroxydeoxyguanosine in liver DNA and gamma-glutamyltransferase-positive hepatocellular lesions in rats given a choline-deficient, l-amino acid-defined diet. Jpn J Cancer Res. 1990;81:1081–4.

    Article  PubMed  CAS  Google Scholar 

  29. Nakae D. Endogenous liver carcinogenesis in the rat. Pathol Int. 1999;49:1028–42.

    Article  PubMed  CAS  Google Scholar 

  30. Yamamoto H, Kondo M, Nakamori S, Nagano H, Wakasa K, Sugita Y, et al. JTE-522, a cyclooxygenase-2 inhibitor, is an effective chemopreventive agent against rat experimental liver fibrosis1. Gastroenterology. 2003;125:556–71.

    Article  PubMed  CAS  Google Scholar 

  31. Seki S, Kitada T, Yamada T, Sakaguchi H, Nakatani K, Wakasa K. In situ detection of lipid peroxidation and oxidative DNA damage in non-alcoholic fatty liver diseases. J Hepatol. 2002;37:56–62.

    Article  PubMed  CAS  Google Scholar 

  32. Fox ES, Brower JS, Bellezzo JM, Leingang KA. N-acetylcysteine and alpha-tocopherol reverse the inflammatory response in activated rat Kupffer cells. J Immunol. 1997;158:5418–23.

    PubMed  CAS  Google Scholar 

  33. Goossens V, Grooten J, De Vos K, Fiers W. Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity. Proc Natl Acad Sci USA. 1995;92:8115–9.

    Article  PubMed  CAS  Google Scholar 

  34. Bataller R, Gabele E, Parsons CJ, Morris T, Yang L, Schoonhoven R, et al. Systemic infusion of angiotensin II exacerbates liver fibrosis in bile duct-ligated rats. Hepatology. 2005;41:1046–55.

    Article  PubMed  CAS  Google Scholar 

  35. Grotendorst GR. Connective tissue growth factor: a mediator of TGF-beta action on fibroblasts. Cytokine Growth Factor Rev. 1997;8:171–9.

    Article  PubMed  CAS  Google Scholar 

  36. Paradis V, Dargere D, Bonvoust F, Vidaud M, Segarini P, Bedossa P. Effects and regulation of connective tissue growth factor on hepatic stellate cells. Lab Invest. 2002;82:767–74.

    PubMed  CAS  Google Scholar 

  37. Schutte K, Bornschein J, Malfertheiner P. Hepatocellular carcinoma—epidemiological trends and risk factors. Dig Dis. 2009;27:80–92.

    PubMed  Google Scholar 

  38. Sakaida I, Hironaka K, Uchida K, Suzuki C, Kayano K, Okita K. Fibrosis accelerates the development of enzyme-altered lesions in the rat liver. Hepatology. 1998;28:1247–52.

    Article  PubMed  CAS  Google Scholar 

  39. Kerbel RS. Tumor angiogenesis: past, present and the near future. Carcinogenesis. 2000;21:505–15.

    Article  PubMed  CAS  Google Scholar 

  40. Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science. 1999;284:808–12.

    Article  PubMed  CAS  Google Scholar 

  41. Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology. 2005;69(Suppl 3):4–10.

    Article  PubMed  CAS  Google Scholar 

  42. Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Hicklin DJ, et al. Halting the interaction between vascular endothelial growth factor and its receptors attenuates liver carcinogenesis in mice. Hepatology. 2001;39:1517–24.

    Article  Google Scholar 

  43. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3:721–32.

    Article  PubMed  CAS  Google Scholar 

  44. Tanimoto K, Makino Y, Pereira T, Poellinger L. Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. EMBO J. 2000;19:4298–309.

    Article  PubMed  CAS  Google Scholar 

  45. Onori P, Morini S, Franchitto A, Sferra R, Alvaro D, Gaudio E. Hepatic microvascular features in experimental cirrhosis: a structural and morphometrical study in CCl4-treated rats. J Hepatol. 2000;33:555–63.

    Article  PubMed  CAS  Google Scholar 

  46. Wang YQ, Luk JM, Ikeda K, Man K, Chu AC, Kaneda K, et al. Regulatory role of vHL/HIF-1alpha in hypoxia-induced VEGF production in hepatic stellate cells. Biochem Biophys Res Commun. 2004;317:358–62.

    Article  PubMed  CAS  Google Scholar 

  47. Semenza GL. Evaluation of HIF-1 inhibitors as anticancer agents. Drug Discov Today. 2007;12:853–9.

    Article  PubMed  CAS  Google Scholar 

  48. Nakamura K, Zen Y, Sato Y, Kozaka K, Matsui O, Harada K, et al. Vascular endothelial growth factor, its receptor Flk-1, and hypoxia inducible factor-1alpha are involved in malignant transformation in dysplastic nodules of the liver. Hum Pathol. 2007;38:1532–46.

    Article  PubMed  CAS  Google Scholar 

  49. Maxwell PH, Dachs GU, Gleadle JM, Nicholls LG, Harris AL, Stratford IJ, et al. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci USA. 1997;94:8104–9.

    Article  PubMed  CAS  Google Scholar 

  50. Fujita K, Yoneda M, Wada K, Mawatari H, Takahashi H, Kirikoshi H, et al. Telmisartan, an angiotensin II type 1 receptor blocker, controls progress of nonalcoholic steatohepatitis in rats. Dig Dis Sci. 2007;52:3455–64.

    Article  PubMed  CAS  Google Scholar 

  51. Schupp M, Janke J, Clasen R, Unger T, Kintscher U. Angiotensin type 1 receptor blockers induce peroxisome proliferator-activated receptor-gamma activity. Circulation. 2004;109:2054–7.

    Article  PubMed  CAS  Google Scholar 

  52. Sugimoto K, Kazdova L, Qi NR, Hyakukoku M, Kren V, Simakova M, et al. Telmisartan increases fatty acid oxidation in skeletal muscle through a peroxisome proliferator-activated receptor-gamma dependent pathway. J Hypertens. 2008;26:1209–15.

    Article  PubMed  CAS  Google Scholar 

  53. Moreno M, Ramalho LN, Sancho-Bru P, Ruiz-Ortega M, Ramalho F, Abraldes JG, et al. Atorvastatin attenuates angiotensin II-induced inflammatory actions in the liver. Am J Physiol Gastrointest Liver Physiol. 2009;296:G147–56.

    Article  PubMed  CAS  Google Scholar 

  54. Bartoli M, Al-Shabrawey M, Labazi M, Behzadian MA, Istanboli M, El-Remessy AB, et al. HMG-CoA reductase inhibitors (statin) prevents retinal neovascularization in a model of oxygen-induced retinopathy. Invest Ophthalmol Vis Sci. 2009;50:4934–40.

    Article  PubMed  Google Scholar 

  55. Xu K, Ding Q, Fang Z, Zheng J, Gao P, Lu Y, et al. Silencing of HIF-1alpha suppresses tumorigenicity of renal cell carcinoma through induction of apoptosis. Cancer Gene Ther. 2010;17:212–22.

    Article  PubMed  CAS  Google Scholar 

  56. Kaji K, Yoshiji H, Kitade M, Ikenaka Y, Noguchi R, Shirai Y, et al. Combination treatment of angiotensin II type I receptor blocker and new oral iron chelator attenuates progression of nonalcoholic steatohepatitis in rats. Am J Physiol Gastrointest Liver Physiol. 2011;300:G1094–104.

    Article  PubMed  CAS  Google Scholar 

  57. Kudo H, Yata Y, Takahara T, Kawai K, Nakayama Y, Kanayama M, et al. Telmisartan attenuates progression of steatohepatitis in mice: role of hepatic macrophage infiltration and effects on adipose tissue. Liver Int. 2009;29:988–96.

    Article  PubMed  CAS  Google Scholar 

  58. Sanchez-Lopez E, Lopez AF, Esteban V, Yague S, Egido J, Ruiz-Ortega M, et al. Angiotensin II regulates vascular endothelial growth factor via hypoxia-inducible factor-1alpha induction and redox mechanisms in the kidney. Antioxid Redox Signal. 2005;7:1275–84.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid from the Ministry of Education, Culture, Sport, Science and Technology of Japan (21790687, 23590997, and 23590996) to Y.N., H.N., and M.Y.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukiomi Nakade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamaki, Y., Nakade, Y., Yamauchi, T. et al. Angiotensin II type 1 receptor antagonist prevents hepatic carcinoma in rats with nonalcoholic steatohepatitis. J Gastroenterol 48, 491–503 (2013). https://doi.org/10.1007/s00535-012-0651-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-012-0651-7

Keywords

Navigation