Skip to main content

Advertisement

Log in

MICA SNPs and the NKG2D system in virus-induced HCC

  • Review
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is one of the most frequent causes of cancer-related death globally. Above well-known risk factors for HCC development ranging from various toxins to diseases such as diabetes mellitus, chronic infection with hepatitis B virus and hepatitis C virus (HCV) poses the most serious threat, constituting the cause in more than 80 % of cases. In addition to the viral genes intensively investigated, the pathophysiological importance of host genetic factors has also been greatly and increasingly appreciated. Genome-wide association studies (GWAS) comprehensively search the host genome at the single-nucleotide level, and have successfully identified the genomic region associated with a whole variety of diseases. With respect to HCC, there have been reports from several groups on single nucleotide polymorphisms (SNPs) associated with hepatocarcinogenesis, among which was our GWAS discovering MHC class I polypeptide-related sequence A (MICA) as a susceptibility gene for HCV-induced HCC. MICA is a natural killer (NK) group 2D (NKG2D) ligand, whose interaction with NKG2D triggers NK cell-mediated cytotoxicity toward the target cells, and is a key molecule in tumor immune surveillance as its expression is induced on stressed cells such as transformed tumor cells for the detection by NK cells. In this review, the latest understanding of the MICA–NKG2D system in viral HCC, particularly focused on its antitumor properties and the involvement of MICA SNPs, is summarized, followed by a discussion of targets for state-of-the-art cancer immunotherapy with personalized medicine in view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ADAM:

A disintegrin and metalloprotease

ATM:

Ataxia–telangiectasia mutated

CHB:

Chronic hepatitis B

CHC:

Chronic hepatitis C

DAP10:

DNAX-activating protein of 10 kDa

GWAS:

Genome-wide association study

HBV:

Hepatitis B virus

HBx:

Hepatitis B virus encoded X protein

HCC:

Hepatocellular carcinoma

HCV:

Hepatitis C virus

HDAC:

Histone deacetylase

IFN:

Interferon

Met:

Methionine

MIC:

MHC class I chain

MICA:

MHC class I polypeptide-related sequence A

MICA-129:

Amino acid 129 of MHC class I polypeptide-related sequence A

miRNA:

MicroRNA

mMICA:

Membrane-bound MHC class I polypeptide-related sequence A

MMP:

Matrix metalloproteinase

NKG2D:

Natural killer group 2D

NKG2DL:

Natural killer group 2D ligand

sMICA:

Soluble MHC class I polypeptide-related sequence A

SNP:

Single nucleotide polymorphism

TGF-β:

Transforming growth factor β

TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligand

References

  1. Yang JD, Roberts LR. Hepatocellular carcinoma: a global view. Nat Rev Gastroenterol Hepatol. 2010;7:448–58.

    PubMed Central  PubMed  Google Scholar 

  2. Aravalli RN, Steer CJ, Cressman EN. Molecular mechanisms of hepatocellular carcinoma. Hepatology. 2008;48:2047–63.

    CAS  PubMed  Google Scholar 

  3. Arzumanyan A, Reis HM, Feitelson MA. Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev Cancer. 2013;13:123–35.

    CAS  PubMed  Google Scholar 

  4. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.

    PubMed  Google Scholar 

  5. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132:2557–76.

    CAS  PubMed  Google Scholar 

  6. Shlomai A, de Jong YP, Rice CM. Virus associated malignancies: the role of viral hepatitis in hepatocellular carcinoma. Semin Cancer Biol. 2014;26:78–88.

    CAS  PubMed  Google Scholar 

  7. Miki D, Ochi H, Hayes CN, Aikata H, Chayama K. Hepatocellular carcinoma: towards personalized medicine. Cancer Sci. 2012;103:846–50.

    CAS  PubMed  Google Scholar 

  8. Kato N, Ji G, Wang Y, Baba M, Hoshida Y, Otsuka M, et al. Large-scale search of single nucleotide polymorphisms for hepatocellular carcinoma susceptibility genes in patients with hepatitis C. Hepatology. 2005;42:846–53.

    CAS  PubMed  Google Scholar 

  9. Manolio TA. Bringing genome-wide association findings into clinical use. Nat Rev Genet. 2013;14:549–58.

    CAS  PubMed  Google Scholar 

  10. Han ZG. Functional genomic studies: insights into the pathogenesis of liver cancer. Annu Rev Genomics Hum Genet. 2012;13:171–205.

    CAS  PubMed  Google Scholar 

  11. Nishida N, Kudo M. Recent advancements in comprehensive genetic analyses for human hepatocellular carcinoma. Oncology. 2013;84(Suppl 1):93–7.

    CAS  PubMed  Google Scholar 

  12. Chaiteerakij R, Addissie BD, Roberts LR. Update on biomarkers of hepatocellular carcinoma. Clin Gastroenterol Hepatol. 2013. doi:10.1016/j.cgh.2013.10.038.

  13. Kumar V, Kato N, Urabe Y, Takahashi A, Muroyama R, Hosono N, et al. Genome-wide association study identifies a susceptibility locus for HCV-induced hepatocellular carcinoma. Nat Genet. 2011;43:455–8.

    CAS  PubMed  Google Scholar 

  14. Kahraman A, Fingas CD, Syn WK, Gerken G, Canbay A. Role of stress-induced NKG2D ligands in liver diseases. Liver Int. 2012;32:370–82.

    CAS  PubMed  Google Scholar 

  15. Watzl C. The NKG2D receptor and its ligands-recognition beyond the “missing self”? Microbes Infect. 2003;5:31–7.

    CAS  PubMed  Google Scholar 

  16. Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science. 1999;285:727–9.

    CAS  PubMed  Google Scholar 

  17. Groh V, Bahram S, Bauer S, Herman A, Beauchamp M, Spies T. Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc Natl Acad Sci U S A. 1996;93:12445–50.

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Bjorkstrom NK, Kekalainen E, Mjosberg J. Tissue-specific effector functions of innate lymphoid cells. Immunology. 2013;139:416–27.

    PubMed Central  PubMed  Google Scholar 

  19. Castello G, Scala S, Palmieri G, Curley SA, Izzo F. HCV-related hepatocellular carcinoma: from chronic inflammation to cancer. Clin Immunol. 2010;134:237–50.

    CAS  PubMed  Google Scholar 

  20. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol. 2008;9:503–10.

    CAS  PubMed  Google Scholar 

  21. Miletic A, Krmpotic A, Jonjic S. The evolutionary arms race between NK cells and viruses: who gets the short end of the stick? Eur J Immunol. 2013;43:867–77.

    CAS  PubMed  Google Scholar 

  22. Cheng M, Chen Y, Xiao W, Sun R, Tian Z. NK cell-based immunotherapy for malignant diseases. Cell Mol Immunol. 2013;10:230–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Karre K, Ljunggren HG, Piontek G, Kiessling R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature. 1986;319:675–8.

    CAS  PubMed  Google Scholar 

  24. Marcus A, Gowen BG, Thompson TW, Iannello A, Ardolino M, Deng W, et al. Recognition of tumors by the innate immune system and natural killer cells. Adv Immunol. 2014;122:91–128.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Shabani Z, Bagheri M, Zare-Bidaki M, Hassanshahi G, Arababadi MK, Mohammadi Nejad M. NK cells in hepatitis B virus infection: a potent target for immunotherapy. Arch Virol. 2014;159:1555–65.

    CAS  PubMed  Google Scholar 

  26. Kasahara M, Yoshida S. Immunogenetics of the NKG2D ligand gene family. Immunogenetics. 2012;64:855–67.

    CAS  PubMed  Google Scholar 

  27. Chan CJ, Smyth MJ, Martinet L. Molecular mechanisms of natural killer cell activation in response to cellular stress. Cell Death Differ. 2013;21:5–14.

    PubMed Central  PubMed  Google Scholar 

  28. Lopez-Soto A, Huergo-Zapico L, Acebes-Huerta A, Villa-Alvarez M, Gonzalez S. NKG2D signaling in cancer immunosurveillance. Int J Cancer. 2014;. doi:10.1002/ijc.28775.

    PubMed  Google Scholar 

  29. Nausch N, Cerwenka A. NKG2D ligands in tumor immunity. Oncogene. 2008;27:5944–58.

    CAS  PubMed  Google Scholar 

  30. Salih HR, Rammensee HG, Steinle A. Cutting edge: down-regulation of MICA on human tumors by proteolytic shedding. J Immunol. 2002;169:4098–102.

    CAS  PubMed  Google Scholar 

  31. Groh V, Wu J, Yee C, Spies T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature. 2002;419:734–8.

    CAS  PubMed  Google Scholar 

  32. Sun D, Wang X, Zhang H, Deng L, Zhang Y. MMP9 mediates MICA shedding in human osteosarcomas. Cell Biol Int. 2011;35:569–74.

    CAS  PubMed  Google Scholar 

  33. Liu G, Atteridge CL, Wang X, Lundgren AD, Wu JD. The membrane type matrix metalloproteinase MMP14 mediates constitutive shedding of MHC class I chain-related molecule A independent of a disintegrin and metalloproteinases. J Immunol. 2010;184:3346–50.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Kohga K, Takehara T, Tatsumi T, Ishida H, Miyagi T, Hosui A, et al. Sorafenib inhibits the shedding of major histocompatibility complex class I-related chain A on hepatocellular carcinoma cells by down-regulating a disintegrin and metalloproteinase 9. Hepatology. 2010;51:1264–73.

    CAS  PubMed  Google Scholar 

  35. Kohga K, Takehara T, Tatsumi T, Miyagi T, Ishida H, Ohkawa K, et al. Anticancer chemotherapy inhibits MHC class I-related chain a ectodomain shedding by downregulating ADAM10 expression in hepatocellular carcinoma. Cancer Res. 2009;69:8050–7.

    CAS  PubMed  Google Scholar 

  36. Waldhauer I, Goehlsdorf D, Gieseke F, Weinschenk T, Wittenbrink M, Ludwig A, et al. Tumor-associated MICA is shed by ADAM proteases. Cancer Res. 2008;68:6368–76.

    CAS  PubMed  Google Scholar 

  37. Chitadze G, Bhat J, Lettau M, Janssen O, Kabelitz D. Generation of soluble NKG2D ligands: proteolytic cleavage, exosome secretion and functional implications. Scand J Immunol. 2013;78:120–9.

    CAS  PubMed  Google Scholar 

  38. Marten A, von Lilienfeld-Toal M, Buchler MW, Schmidt J. Soluble MIC is elevated in the serum of patients with pancreatic carcinoma diminishing gammadelta T cell cytotoxicity. Int J Cancer. 2006;119:2359–65.

    PubMed  Google Scholar 

  39. Bahram S, Bresnahan M, Geraghty DE, Spies T. A second lineage of mammalian major histocompatibility complex class I genes. Proc Natl Acad Sci U S A. 1994;91:6259–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Mok JW, Lee YJ, Kim JY, Lee EB, Song YW, Park MH, et al. Association of MICA polymorphism with rheumatoid arthritis patients in Koreans. Hum Immunol. 2003;64:1190–4.

    CAS  PubMed  Google Scholar 

  41. Mizuki N, Ota M, Kimura M, Ohno S, Ando H, Katsuyama Y, et al. Triplet repeat polymorphism in the transmembrane region of the MICA gene: a strong association of six GCT repetitions with Behçet disease. Proc Natl Acad Sci U S A. 1997;94:1298–303.

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Park Y, Lee H, Sanjeevi CB, Eisenbarth GS. MICA polymorphism is associated with type 1 diabetes in the Korean population. Diabetes Care. 2001;24:33–8.

    CAS  PubMed  Google Scholar 

  43. Tinto N, Ciacci C, Calcagno G, Gennarelli D, Spampanato A, Farinaro E, et al. Increased prevalence of celiac disease without gastrointestinal symptoms in adults MICA 5.1 homozygous subjects from the Campania area. Dig Liver Dis. 2008;40:248–52.

    CAS  PubMed  Google Scholar 

  44. Gong Z, Luo QZ, Lin L, Su YP, Peng HB, Du K, et al. Association of MICA gene polymorphisms with liver fibrosis in schistosomiasis patients in the Dongting Lake region. Braz J Med Biol Res. 2012;45:222–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Tonnerre P, Gerard N, Chatelais M, Poli C, Allard S, Cury S, et al. MICA variant promotes allosensitization after kidney transplantation. J Am Soc Nephrol. 2013;24:954–66.

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Jiang X, Zou Y, Huo Z, Yu P. Association of major histocompatibility complex class I chain-related gene A microsatellite polymorphism and hepatocellular carcinoma in South China Han population. Tissue Antigens. 2011;78:143–7.

    CAS  PubMed  Google Scholar 

  47. Tamaki S, Kawakami M, Yamanaka Y, Shimomura H, Imai Y, Ishida J, et al. Relationship between soluble MICA and the MICA A5.1 homozygous genotype in patients with oral squamous cell carcinoma. Clin Immunol. 2009;130:331–7.

    CAS  PubMed  Google Scholar 

  48. Lu M, Xia B, Ge L, Li Y, Zhao J, Chen F. Role of major histocompatibility complex class I-related molecules A*A5.1 allele in ulcerative colitis in Chinese patients. Immunology. 2009;128:e230–6.

    PubMed Central  PubMed  Google Scholar 

  49. Steinle A, Li P, Morris DL, Groh V, Lanier LL, Strong RK, et al. Interactions of human NKG2D with its ligands MICA, MICB, and homologs of the mouse RAE-1 protein family. Immunogenetics. 2001;53:279–87.

    CAS  PubMed  Google Scholar 

  50. Lopez-Hernandez R, Valdes M, Lucas D, Campillo JA, Martinez-Garcia P, Salama H, et al. Association analysis of MICA gene polymorphism and MICA-129 dimorphism with inflammatory bowel disease susceptibility in a Spanish population. Hum Immunol. 2010;71:512–4.

    CAS  PubMed  Google Scholar 

  51. Raache R, Belanteur K, Amroun H, Benyahia A, Heniche A, Azzouz M, et al. Association of major histocompatibility complex class 1 chain-related gene a dimorphism with type 1 diabetes and latent autoimmune diabetes in adults in the Algerian population. Clin Vaccine Immunol. 2012;19:557–61.

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Boukouaci W, Busson M, de Peffault Latour R, Rocha V, Suberbielle C, Bengoufa D. MICA-129 genotype, soluble MICA, and anti-MICA antibodies as biomarkers of chronic graft-versus-host disease. Blood. 2009;114:5216–24.

    CAS  PubMed  Google Scholar 

  53. Kirsten H, Petit-Teixeira E, Scholz M, Hasenclever D, Hantmann H, Heider D, et al. Association of MICA with rheumatoid arthritis independent of known HLA-DRB1 risk alleles in a family-based and a case control study. Arthritis Res Ther. 2009;11:R60.

    PubMed Central  PubMed  Google Scholar 

  54. Thomas DL. Global control of hepatitis C: where challenge meets opportunity. Nat Med. 2013;19:850–8.

    CAS  PubMed  Google Scholar 

  55. Strader DB, Wright T, Thomas DL, Seeff LB. Diagnosis, management, and treatment of hepatitis C. Hepatology. 2004;39:1147–71.

    PubMed  Google Scholar 

  56. Fattovich G, Stroffolini T, Zagni I, Donato F. Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology. 2004;127:S35–50.

    PubMed  Google Scholar 

  57. Jeong SW, Jang JY, Chung RT. Hepatitis C virus and hepatocarcinogenesis. Clin Mol Hepatol. 2012;18:347–56.

    PubMed Central  PubMed  Google Scholar 

  58. Goto K, Lin W, Zhang L, Jilg N, Shao RX, Schaefer EA, et al. The AMPK-related kinase SNARK regulates hepatitis C virus replication and pathogenesis through enhancement of TGF-β signaling. J Hepatol. 2013;59:942–8.

    CAS  PubMed  Google Scholar 

  59. Tsai WL, Chung RT. Viral hepatocarcinogenesis. Oncogene. 2010;29:2309–24.

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Kato N, Yoshida H, Ono-Nita SK, Kato J, Goto T, Otsuka M, et al. Activation of intracellular signaling by hepatitis B and C viruses: C-viral core is the most potent signal inducer. Hepatology. 2000;32:405–12.

    CAS  PubMed  Google Scholar 

  61. Caldwell S, Park SH. The epidemiology of hepatocellular cancer: from the perspectives of public health problem to tumor biology. J Gastroenterol. 2009;44(Suppl 19):96–101.

    PubMed  Google Scholar 

  62. Otsuka M, Kishikawa T, Yoshikawa T, Ohno M, Takata A, Shibata C. The role of microRNAs in hepatocarcinogenesis: current knowledge and future prospects. J Gastroenterol. 2013;49(2):173–84.

    PubMed  Google Scholar 

  63. Negrini M, Gramantieri L, Sabbioni S, Croce CM. microRNA involvement in hepatocellular carcinoma. Anticancer Agents Med Chem. 2011;11:500–21.

    CAS  PubMed  Google Scholar 

  64. Schmidt N, Neumann-Haefelin C, Thimme R. Cellular immune responses to hepatocellular carcinoma: lessons for immunotherapy. Dig Dis. 2012;30:483–91.

    PubMed  Google Scholar 

  65. Jinushi M, Takehara T, Tatsumi T, Kanto T, Groh V, Spies T, et al. Autocrine/paracrine IL-15 that is required for type I IFN-mediated dendritic cell expression of MHC class I-related chain A and B is impaired in hepatitis C virus infection. J Immunol. 2003;171:5423–9.

    CAS  PubMed  Google Scholar 

  66. Lunemann S, Malone DF, Hengst J, Port K, Grabowski J, Deterding K, et al. Compromised function of natural killer cells in acute and chronic viral hepatitis. J Infect Dis. 2014;209:1362–73.

    CAS  PubMed  Google Scholar 

  67. Varchetta S, Mele D, Mantovani S, Oliviero B, Cremonesi E, Ludovisi S, et al. Impaired intrahepatic natural killer cell cytotoxic function in chronic hepatitis C virus infection. Hepatology. 2012;56:841–9.

    CAS  PubMed  Google Scholar 

  68. Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology. 2008;134:1655–69.

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Glassner A, Eisenhardt M, Kramer B, Korner C, Coenen M, Sauerbruch T, et al. NK cells from HCV-infected patients effectively induce apoptosis of activated primary human hepatic stellate cells in a TRAIL-, FasL- and NKG2D-dependent manner. Lab Invest. 2012;92:967–77.

    PubMed  Google Scholar 

  70. Korangy F, Hochst B, Manns MP, Greten TF. Immune responses in hepatocellular carcinoma. Dig Dis. 2010;28:150–4.

    PubMed  Google Scholar 

  71. Hoechst B, Voigtlaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H, et al. Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology. 2009;50:799–807.

    CAS  PubMed  Google Scholar 

  72. Cai L, Zhang Z, Zhou L, Wang H, Fu J, Zhang S, et al. Functional impairment in circulating and intrahepatic NK cells and relative mechanism in hepatocellular carcinoma patients. Clin Immunol. 2008;129:428–37.

    CAS  PubMed  Google Scholar 

  73. Sene D, Levasseur F, Abel M, Lambert M, Camous X, Hernandez C, et al. Hepatitis C virus (HCV) evades NKG2D-dependent NK cell responses through NS5A-mediated imbalance of inflammatory cytokines. PLoS Pathog. 2010;6:e1001184.

    PubMed Central  PubMed  Google Scholar 

  74. Kamimura H, Yamagiwa S, Tsuchiya A, Takamura M, Matsuda Y, Ohkoshi S, et al. Reduced NKG2D ligand expression in hepatocellular carcinoma correlates with early recurrence. J Hepatol. 2012;56:381–8.

    CAS  PubMed  Google Scholar 

  75. Wen C, He X, Ma H, Hou N, Wei C, Song T, et al. Hepatitis C virus infection downregulates the ligands of the activating receptor NKG2D. Cell Mol Immunol. 2008;5:475–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Kim H, Bose SK, Meyer K, Ray R. Hepatitis C virus impairs natural killer cell mediated augmentation of complement synthesis. J Virol. 2014;88:2564–71.

    PubMed Central  PubMed  Google Scholar 

  77. Jinushi M, Takehara T, Tatsumi T, Hiramatsu N, Sakamori R, Yamaguchi S, et al. Impairment of natural killer cell and dendritic cell functions by the soluble form of MHC class I-related chain A in advanced human hepatocellular carcinomas. J Hepatol. 2005;43:1013–20.

    CAS  PubMed  Google Scholar 

  78. Lopez-Vazquez A, Rodrigo L, Mina-Blanco A, Martinez-Borra J, Fuentes D, Rodriguez M, et al. Extended human leukocyte antigen haplotype EH18.1 influences progression to hepatocellular carcinoma in patients with hepatitis C virus infection. J Infect Dis. 2004;189:957–63.

    CAS  PubMed  Google Scholar 

  79. Lo PH, Urabe Y, Kumar V, Tanikawa C, Koike K, Kato N, et al. Identification of a functional variant in the MICA promoter which regulates MICA expression and increases HCV-related hepatocellular carcinoma risk. PLoS One. 2013;8:e61279.

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Ngamruengphong S, Patel T. Molecular evolution of genetic susceptibility to hepatocellular carcinoma. Dig Dis Sci. 2014;59:986–91.

    CAS  PubMed  Google Scholar 

  81. Lange CM, Bibert S, Dufour JF, Cellerai C, Cerny A, Heim MH, et al. Comparative genetic analyses point to HCP5 as susceptibility locus for HCV-associated hepatocellular carcinoma. J Hepatol. 2013;59:504–9.

    CAS  PubMed  Google Scholar 

  82. Motomura T, Ono Y, Shirabe K, Fukuhara T, Konishi H, Mano Y, et al. Neither MICA nor DEPDC5 genetic polymorphisms correlate with hepatocellular carcinoma recurrence following hepatectomy. HPB Surg. 2012;2012:185496.

    PubMed Central  PubMed  Google Scholar 

  83. Feitelson MA, Bonamassa B, Arzumanyan A. The roles of hepatitis B virus-encoded X protein in virus replication and the pathogenesis of chronic liver disease. Expert Opin Ther Targets. 2014;18:293–306.

    CAS  PubMed  Google Scholar 

  84. Li Y, Wang JJ, Gao S, Liu Q, Bai J, Zhao XQ, et al. Decreased peripheral natural killer cells activity in the immune activated stage of chronic hepatitis B. PLoS One. 2014;9:e86927.

    PubMed Central  PubMed  Google Scholar 

  85. Peppa D, Micco L, Javaid A, Kennedy PT, Schurich A, Dunn C, et al. Blockade of immunosuppressive cytokines restores NK cell antiviral function in chronic hepatitis B virus infection. PLoS Pathog. 2010;6:e1001227.

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Chen Y, Wei H, Sun R, Tian Z. Impaired function of hepatic natural killer cells from murine chronic HBsAg carriers. Int Immunopharmacol. 2005;5:1839–52.

    CAS  PubMed  Google Scholar 

  87. Rehermann B. Pathogenesis of chronic viral hepatitis: differential roles of T cells and NK cells. Nat Med. 2013;19:859–68.

    CAS  PubMed  Google Scholar 

  88. Sun C, Fu B, Gao Y, Liao X, Sun R, Tian Z, et al. TGF-beta1 down-regulation of NKG2D/DAP10 and 2B4/SAP expression on human NK cells contributes to HBV persistence. PLoS Pathog. 2012;8:e1002594.

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Zwirner NW, Fuertes MB, Girart MV, Domaica CI, Rossi LE. Cytokine-driven regulation of NK cell functions in tumor immunity: role of the MICA-NKG2D system. Cytokine Growth Factor Rev. 2007;18:159–70.

    CAS  PubMed  Google Scholar 

  90. Chen Y, Cheng M, Tian Z, Hepatitis B. virus down-regulates expressions of MHC class I molecules on hepatoplastoma cell line. Cell Mol Immunol. 2006;3:373–8.

    CAS  PubMed  Google Scholar 

  91. Tang KF, Chen M, Xie J, Song GB, Shi YS, Liu Q, et al. Inhibition of hepatitis B virus replication by small interference RNA induces expression of MICA in HepG2.2.15 cells. Med Microbiol Immunol. 2009;198:27–32.

    CAS  PubMed  Google Scholar 

  92. Wu J, Zhang XJ, Shi KQ, Chen YP, Ren YF, Song YJ, et al. Hepatitis B surface antigen inhibits MICA and MICB expression via induction of cellular miRNAs in hepatocellular carcinoma cells. Carcinogenesis. 2013;35:155–63.

    PubMed  Google Scholar 

  93. Kishikawa T, Otsuka M, Yoshikawa T, Ohno M, Takata A, Shibata C, et al. Regulation of the expression of the liver cancer susceptibility gene MICA by microRNAs. Sci Rep. 2013;3:2739.

    PubMed Central  PubMed  Google Scholar 

  94. Kumar V, Yi Lo PH, Sawai H, Kato N, Takahashi A, Deng Z. Soluble MICA and a MICA variation as possible prognostic biomarkers for HBV-induced hepatocellular carcinoma. PLoS One. 2012;7:e44743.

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Tong HV, Toan NL, Song LH, Bock CT, Kremsner PG, Velavan TP. Hepatitis B virus-induced hepatocellular carcinoma: functional roles of MICA variants. J Viral Hepat. 2013;20:687–98.

    CAS  PubMed  Google Scholar 

  96. Li JJ, Pan K, Gu MF, Chen MS, Zhao JJ, Wang H, et al. Prognostic value of soluble MICA levels in the serum of patients with advanced hepatocellular carcinoma. Chin J Cancer. 2013;32:141–8.

    PubMed Central  PubMed  Google Scholar 

  97. Ou DP, Tao YM, Tang FQ, Yang LY. The hepatitis B virus X protein promotes hepatocellular carcinoma metastasis by upregulation of matrix metalloproteinases. Int J Cancer. 2007;120:1208–14.

    CAS  PubMed  Google Scholar 

  98. Yu FL, Liu HJ, Lee JW, Liao MH, Shih WL. Hepatitis B virus X protein promotes cell migration by inducing matrix metalloproteinase-3. J Hepatol. 2005;42:520–7.

    CAS  PubMed  Google Scholar 

  99. Lara-Pezzi E, Gomez-Gaviro MV, Galvez BG, Mira E, Iniguez MA, Fresno M, et al. The hepatitis B virus X protein promotes tumor cell invasion by inducing membrane-type matrix metalloproteinase-1 and cyclooxygenase-2 expression. J Clin Invest. 2002;110:1831–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Kim JR, Kim CH. Association of a high activity of matrix metalloproteinase-9 to low levels of tissue inhibitors of metalloproteinase-1 and -3 in human hepatitis B-viral hepatoma cells. Int J Biochem Cell Biol. 2004;36:2293–306.

    CAS  PubMed  Google Scholar 

  101. Chung TW, Lee YC, Kim CH. Hepatitis B viral HBx induces matrix metalloproteinase-9 gene expression through activation of ERK and PI-3 K/AKT pathways: involvement of invasive potential. FASEB J. 2004;18:1123–5.

    CAS  PubMed  Google Scholar 

  102. Karacki PS, Gao X, Thio CL, Thomas DL, Goedert JJ, Vlahov D, et al. MICA and recovery from hepatitis C virus and hepatitis B virus infections. Genes Immun. 2004;5:261–6.

    CAS  PubMed  Google Scholar 

  103. Chen K, Shi W, Xin Z, Wang H, Zhu X, Wu X, et al. Replication of genome wide association studies on hepatocellular carcinoma susceptibility Loci in a chinese population. PLoS One. 2013;8:e77315.

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Al-Qahtani AA, Al-Anazi M, Abdo AA, Sanai FM, Al-Hamoudi W, Alswat KA, et al. Genetic variation at -1878 (rs2596542) in MICA gene region is associated with chronic hepatitis B virus infection in Saudi Arabian patients. Exp Mol Pathol. 2013;95:255–8.

    CAS  PubMed  Google Scholar 

  105. Guan YS, He Q. Role of antiviral therapy in the management of hepatocellular carcinoma. Anticancer Drugs. 2013;24:337–43.

    CAS  PubMed  Google Scholar 

  106. Fletcher SP. Delaney WEt. New therapeutic targets and drugs for the treatment of chronic hepatitis B. Semin Liver Dis. 2013;33:130–7.

    CAS  PubMed  Google Scholar 

  107. Kurokawa M, Hiramatsu N, Oze T, Yakushijin T, Miyazaki M, Hosui A, et al. Long-term effect of lamivudine treatment on the incidence of hepatocellular carcinoma in patients with hepatitis B virus infection. J Gastroenterol. 2012;47:577–85.

    CAS  PubMed  Google Scholar 

  108. Manns MP, von Hahn T. Novel therapies for hepatitis C—one pill fits all? Nat Rev Drug Discov. 2013;12:595–610.

    CAS  PubMed  Google Scholar 

  109. Ogawa E, Furusyo N, Kajiwara E, Takahashi K, Nomura H, Maruyama T, et al. Efficacy of pegylated interferon alpha-2b and ribavirin treatment on the risk of hepatocellular carcinoma in patients with chronic hepatitis C: a prospective, multicenter study. J Hepatol. 2013;58:495–501.

    CAS  PubMed  Google Scholar 

  110. Chotiyaputta W, Lok AS. Hepatitis B virus variants. Nat Rev Gastroenterol Hepatol. 2009;6:453–62.

    CAS  PubMed  Google Scholar 

  111. Abu-Amara M, Feld JJ. Does antiviral therapy for chronic hepatitis B reduce the risk of hepatocellular carcinoma? Semin Liver Dis. 2013;33:157–66.

    CAS  PubMed  Google Scholar 

  112. Papatheodoridis GV, Manolakopoulos S, Touloumi G, Vourli G, Raptopoulou-Gigi M, Vafiadis-Zoumbouli I, et al. Virological suppression does not prevent the development of hepatocellular carcinoma in HBeAg-negative chronic hepatitis B patients with cirrhosis receiving oral antiviral(s) starting with lamivudine monotherapy: results of the nationwide HEPNET. Greece cohort study. Gut. 2011;60:1109–16.

    CAS  PubMed  Google Scholar 

  113. Salvatierra K, Fareleski S, Forcada A, Lopez-Labrador FX. Hepatitis C virus resistance to new specifically-targeted antiviral therapy: a public health perspective. World J Virol. 2013;2:6–15.

    PubMed Central  PubMed  Google Scholar 

  114. Morgan RL, Baack B, Smith BD, Yartel A, Pitasi M, Falck-Ytter Y. Eradication of hepatitis C virus infection and the development of hepatocellular carcinoma: a meta-analysis of observational studies. Ann Intern Med. 2013;158:329–37.

    PubMed  Google Scholar 

  115. Miamen AG, Dong H, Roberts LR. Immunotherapeutic approaches to hepatocellular carcinoma treatment. Liver Cancer. 2012;1:226–37.

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Couzin-Frankel J. Breakthrough of the year 2013. Cancer immunother. Sci. 2013;342:1432–3.

    CAS  Google Scholar 

  117. Lavanchy D. Viral hepatitis: global goals for vaccination. J Clin Virol. 2012;55:296–302.

    PubMed  Google Scholar 

  118. Gerlich WH. Medical virology of hepatitis B: how it began and where we are now. Virol J. 2013;10:239.

    PubMed Central  PubMed  Google Scholar 

  119. Wendt A, Adhoute X, Castellani P, Oules V, Ansaldi C, Benali S, et al. Chronic hepatitis C: future treatment. Clin Pharmacol. 2014;6:1–17.

    PubMed Central  PubMed  Google Scholar 

  120. Gao Q, Shi Y, Wang X, Zhou J, Qiu S, Fan J. Translational medicine in hepatocellular carcinoma. Front Med. 2012;6:122–33.

    PubMed  Google Scholar 

  121. Ohira M, Nishida S, Tryphonopoulos P, Tekin A, Selvaggi G, Moon J, et al. Clinical-scale isolation of interleukin-2-stimulated liver natural killer cells for treatment of liver transplantation with hepatocellular carcinoma. Cell Transplant. 2012;21:1397–406.

    PubMed  Google Scholar 

  122. Spear P, Wu MR, Sentman ML, Sentman CL. NKG2D ligands as therapeutic targets. Cancer Immun. 2013;13:8.

    PubMed Central  PubMed  Google Scholar 

  123. Zhang C, Zhang J, Niu J, Zhou Z, Tian Z. Interleukin-12 improves cytotoxicity of natural killer cells via upregulated expression of NKG2D. Hum Immunol. 2008;69:490–500.

    CAS  PubMed  Google Scholar 

  124. Xia X, Li X, Feng G, Zheng C, Liang H, Zhou G. Intra-arterial interleukin-12 gene delivery combined with chemoembolization: anti-tumor effect in a rabbit hepatocellular carcinoma (HCC) model. Acta Radiol. 2013;54:684–9.

    PubMed  Google Scholar 

  125. Chang CJ, Chen YH, Huang KW, Cheng HW, Chan SF, Tai KF, et al. Combined GM-CSF and IL-12 gene therapy synergistically suppresses the growth of orthotopic liver tumors. Hepatology. 2007;45:746–54.

    CAS  PubMed  Google Scholar 

  126. Ullrich E, Koch J, Cerwenka A, Steinle A. New prospects on the NKG2D/NKG2DL system for oncology. Oncoimmunology. 2013;2:e26097.

    PubMed Central  PubMed  Google Scholar 

  127. Armeanu S, Bitzer M, Lauer UM, Venturelli S, Pathil A, Krusch M, et al. Natural killer cell-mediated lysis of hepatoma cells via specific induction of NKG2D ligands by the histone deacetylase inhibitor sodium valproate. Cancer Res. 2005;65:6321–9.

    CAS  PubMed  Google Scholar 

  128. Worns MA. Systemic therapy and synergies by combination. Dig Dis. 2013;31:104–11.

    PubMed  Google Scholar 

  129. Armeanu S, Krusch M, Baltz KM, Weiss TS, Smirnow I, Steinle A, et al. Direct and natural killer cell-mediated antitumor effects of low-dose bortezomib in hepatocellular carcinoma. Clin Cancer Res. 2008;14:3520–8.

    CAS  PubMed  Google Scholar 

  130. Kim GP, Mahoney MR, Szydlo D, Mok TS, Marshke R, Holen K, et al. An international, multicenter phase II trial of bortezomib in patients with hepatocellular carcinoma. Invest New Drugs. 2012;30:387–94.

    PubMed Central  CAS  PubMed  Google Scholar 

  131. Van Belle TL, von Herrath MG. The role of the activating receptor NKG2D in autoimmunity. Mol Immunol. 2009;47:8–11.

    PubMed  Google Scholar 

  132. Chen Y, Wei H, Sun R, Dong Z, Zhang J, Tian Z. Increased susceptibility to liver injury in hepatitis B virus transgenic mice involves NKG2D-ligand interaction and natural killer cells. Hepatology. 2007;46:706–15.

    CAS  PubMed  Google Scholar 

  133. Rehermann B, Nascimbeni M. Immunology of hepatitis B virus and hepatitis C virus infection. Nat Rev Immunol. 2005;5:215–29.

    CAS  PubMed  Google Scholar 

  134. Zhang Z, Zhang S, Zou Z, Shi J, Zhao J, Fan R, et al. Hypercytolytic activity of hepatic natural killer cells correlates with liver injury in chronic hepatitis B patients. Hepatology. 2011;53:73–85.

    PubMed Central  CAS  PubMed  Google Scholar 

  135. Dunn C, Brunetto M, Reynolds G, Christophides T, Kennedy PT, Lampertico P, et al. Cytokines induced during chronic hepatitis B virus infection promote a pathway for NK cell-mediated liver damage. J Exp Med. 2007;204:667–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  136. Ahlenstiel G, Titerence RH, Koh C, Edlich B, Feld JJ, Rotman Y, et al. Natural killer cells are polarized toward cytotoxicity in chronic hepatitis C in an interferon-alfa-dependent manner. Gastroenterology. 2010;138(325–35):e1–2.

    PubMed  Google Scholar 

  137. Okamoto Y, Shinjo K, Shimizu Y, Sano T, Yamao K, Gao W, et al. Hepatitis virus infection affects DNA methylation in mice with humanized livers. Gastroenterology. 2014;146:562–72.

    CAS  PubMed  Google Scholar 

  138. Zou Y, Chen T, Han M, Wang H, Yan W, Song G, et al. Increased killing of liver NK cells by Fas/Fas ligand and NKG2D/NKG2D ligand contributes to hepatocyte necrosis in virus-induced liver failure. J Immunol. 2010;184:466–75.

    CAS  PubMed  Google Scholar 

  139. Kahraman A, Schlattjan M, Kocabayoglu P, Yildiz-Meziletoglu S, Schlensak M, Fingas CD, et al. Major histocompatibility complex class I-related chains A and B (MIC A/B): a novel role in nonalcoholic steatohepatitis. Hepatology. 2010;51:92–102.

    CAS  PubMed  Google Scholar 

  140. Rosmorduc O, Fartoux L. HCC and NASH: how strong is the clinical demonstration? Clin Res Hepatol Gastroenterol. 2012;36:202–8.

    CAS  PubMed  Google Scholar 

  141. Cox ST, Madrigal JA, Saudemont A. Diversity and characterization of polymorphic 5′ promoter haplotypes of MICA and MICB genes. Tissue Antigens. 2014. doi:10.1111/tan.12400.

    Google Scholar 

  142. Raulet DH, Gasser S, Gowen BG, Deng W, Jung H. Regulation of ligands for the NKG2D activating receptor. Annu Rev Immunol. 2013;31:413–41.

    PubMed Central  CAS  PubMed  Google Scholar 

  143. Chaiteerakij R, Addissie BD, Roberts LR. Update on biomarkers of hepatocellular carcinoma. Clin Gastroenterol Hepatol. 2013. doi:10.1016/j.cgh.2013.10.038.

  144. Hoshida Y, Fuchs BC, Tanabe KK. Genomic risk of hepatitis C-related hepatocellular carcinoma. J Hepatol. 2012;56:729–30.

    PubMed  Google Scholar 

  145. Della Corte C, Aghemo A, Colombo M. Individualized hepatocellular carcinoma risk: the challenges for designing successful chemoprevention strategies. World J Gastroenterol. 2013;19:1359–71.

    PubMed Central  PubMed  Google Scholar 

  146. Delaney WEt. Molecular virology of chronic hepatitis B and C: parallels, contrasts and impact on drug development and treatment outcome. Antiviral Res. 2013;99:34–48.

    CAS  PubMed  Google Scholar 

  147. Liver EAftSot. EASL clinical practice guidelines: management of hepatitis C virus infection. J Hepatol. 2014;60:392–420.

    Google Scholar 

  148. Gao B. Natural killer group 2 member D, its ligands, and liver disease: good or bad? Hepatology. 2010;51:8–11.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

N.K. is supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology and the Ministry of Health, Labour and Welfare, Japan. K.G. is a recipient of Research Fellowships of the Japan Society for the Promotion of Science (JSPS) for Young Scientists. The authors appreciate critical reading of the manuscript and comments by Dr. Masahisa Jinushi, Center for Infection-Associated Cancer, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan.

Conflict of interest

The authors disclose no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoya Kato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goto, K., Kato, N. MICA SNPs and the NKG2D system in virus-induced HCC. J Gastroenterol 50, 261–272 (2015). https://doi.org/10.1007/s00535-014-1000-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-014-1000-9

Keywords

Navigation