Skip to main content
Log in

Microthermal sensors for determining fluid composition and flow rate in fluidic systems

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

To analyze fluid mixtures a simple and low cost measurement method is realized using a microthermal sensor that introduces a short heat pulse into the fluid under test whilst the resulting temperature increase reflects thermal parameters of the fluid. For methanol in water this principle showed an almost linear dependence of the temperature increase on the methanol content for the volume concentration range 0–20 %. The sensitivity was determined to S = 0.19 K/(% (V/V)) for a heat pulse of 0.5 s duration and a heater power of 30 mW. The accuracy achieved in stopped-flow single pulse measurements is ~0.5 % (V/V). By integrating additional temperature sensors in front and behind the microheater the flow rate of the liquid can also be determined using thermal anemometry. The low cost sensor construction and simple signal analysis make this principle promising for use in low cost mobile applications like DMFC power supplies for laptops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Bates OK, Hazzard G, Palmer G (1938) Thermal conductivity of liquids. Ind Eng Chem Anal Ed 10:314–318. doi:10.1021/ac50122a006

    Article  Google Scholar 

  • Dow Chemical Company (2007) Triethylene glycol. Product Information, Form No: XXX-0207X CRCG

  • DuPont (2011) DuPont Kapton HN. Kapton HN datasheet

  • Fraden J (1996) Thermal transport sensors. In: Handbook of modern sensors, 2nd edn. Springer, New York, pp 359–364

  • Fujifilm (2012) Durimide 10/32 pre-imidized polyamide-imide. Technical Product Information, Rev. 05/12 LJP

  • Gustafsson SE, Karawacki E, Khan MN (1979) Transient hot-strip method for simultaneously measuring thermal conductivity and thermal diffusivity of solids and fluids. J Phys D Appl Phys 12(1411):1421. doi:10.1088/0022-3727/12/9/003

    Google Scholar 

  • Jobson E (2004) Future challenges in automotive emission control. Top Cata 28:191–199. doi:10.1023/B:TOCA.0000024350.93474.d1

    Google Scholar 

  • Khamshah N, Abdalla AN, Koh SP, Rashag HF (2011) Issues of temperature compensation techniques for hot wire thermal flow sensor: a review. Int J Phys Sci 6:3270–3278. doi:10.5897/IJPS11.630

    Google Scholar 

  • Kulikovsky AA (2002) The voltage–current curve of a direct methanol fuel cell: “exact” and fitting equations. Electrochem Commun 4:939–946. doi:10.1016/S1388-2481(02)00494-0

    Article  Google Scholar 

  • Methanex Corporation (2006) Technical information and safe handling guide for methanol. Version 3.0

  • Narayanan SR, Valdez TI (2003) Portable direct methanol fuel cell systems. In: Handbook of fuel cells. Wiley, New York, pp 1133–1141

  • Nitsche W, Brunn A (2006) Strömungsmesstechnik, 2nd edn. Springer, Berlin

    Google Scholar 

  • Nölke M (2007) Entwicklung eines Direkt-Methanol-Brennstoffzellensystems der Leistungsklasse kleiner 5 kW. Forschungszentrum Jülich, Jülich

    Google Scholar 

  • Oedegaard A, Hentschel C (2006) Characterisation of a portable DMFC stack and a methanol-feeding concept. J Power Sources 158:177–187. doi:10.1016/j.jpowsour.2005.06.044

    Article  Google Scholar 

  • Regulation (EC) No. 595/2009 of the European Parliament and of the Council (2009). OJ 52 L 188. doi:10.3000/17252555.L_2009.188.eng

  • Ren X, Zelenay P, Thomas S, Davey J, Gottesfeld S (2000) Recent advances in direct methanol fuel cells at Los Alamos national laboratory. J Power Sources 86:111–116. doi:10.1016/S0378-7753(99)00407-3

    Article  Google Scholar 

  • Schmitt B, Schütze A (2013) Novel microthermal sensor for quantification of methanol in water for direct methanol fuel cells. In: Proc Sensor + Test Conference 2013

  • Schmitt B, Kiefer C, Schütze A (2013) Microthermal sensors for determining fluid composition and flow rate in fluidic systems. Proc SPIE 8763. doi:10.1117/12.2017293

  • Scott K, Taama W, Cruickshank J (1998) Performance of a direct methanol fuel cell. J Appl Electrochem 28:289–297. doi:10.1023/A:1003263632683

    Article  Google Scholar 

  • Trautwein et al. (2003) AdBlue as a reducing agent for the decrease of NOx emissions from diesel engines of commercial vehicles. DGMK Research Report 616-1. ISBN: 3-936418-08-X. DGMK German Society for Petroleum and Coal Science and Technology, Hamburg

  • Westh P, Hvidt A (1993) Heat capacity of aqueous solutions of monohydric alcohols at subzero temperatures. Biophys Chem 46:27–35. doi:10.1016/0301-4622(93)87004-G

    Article  Google Scholar 

Download references

Acknowledgments

Funding of this research by the German Federal Ministry of Education and Research (BMBF) in the framework of the project InMischung (Support Code: 16SV5394) in the program Microsystems Technology is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Schmitt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitt, B., Kiefer, C. & Schütze, A. Microthermal sensors for determining fluid composition and flow rate in fluidic systems. Microsyst Technol 20, 641–652 (2014). https://doi.org/10.1007/s00542-013-2001-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-013-2001-y

Keywords

Navigation