Skip to main content
Log in

A polymer-based spiky microelectrode array for electrocorticography

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The advanced technology of microelectromechanical systems (MEMS) makes possible precise and reproducible construction of various microelectrode arrays (MEAs) with patterns of high spatial density. Polymer-based MEMS devices are gaining increasing attention in the field of electrophysiology, since they can be used to form flexible, yet reliable electrical interfaces with the central and the peripheral nervous system. In this paper we present a novel MEA, designed for obtaining neural signals, with a polyimide (PI)—platinum (Pt)—SU-8 layer structure. Electrodes with special, arrow-like shapes were formed in a single row, enabling slight penetration into the tissue. The applied process flow allowed reproducible batch fabrication of the devices with high yield. In vitro characterization of the electrode arrays was performed with electrochemical impedance spectroscopy in lactated Ringer’s solution. Functional tests were carried out by performing acute recordings on rat neocortex. The devices have proven to be convenient tools for acute in vivo electrocorticography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altuna A, Menendez de la Prida L, Bellistri E, Gabriel G, Guimerá A, Berganzo J, Villa R, Fernández LJ (2012) SU-8 based microprobes with integrated planar electrodes for enhanced neural depth recording. Biosens Bioelectron 37:1–5

    Article  Google Scholar 

  • Boretius T, Badia J, Pascual-Font A, Schuettler M, Navarro X, Yoshida K, Stieglitz T (2010) A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve. Biosens Bioelectron 26:62–69

    Article  Google Scholar 

  • Chang TY, Yadav VG, De Leo S, Mohedas A, Rajalingam B, Chen CL, Selvarasah S, Dokmeci MR, Khademhosseini A (2007) Cell and protein compatibility of parylene-C surfaces. Langmuir 23:11718–11725

    Article  Google Scholar 

  • Cheng M-Y, Park W-T, Yu A, Xue R-F, Tan K, Yu D, Lee S-H, Gan C, Je M (2013) A flexible polyimide cable for implantable neural probe arrays. Microsyst Technol 19:1111–1118

    Article  Google Scholar 

  • Cheung KC (2007) Implantable microscale neural interfaces. Biomed Microdev 9:923–938

    Article  Google Scholar 

  • Cheung KC, Renaud P, Tanila H, Djupsund K (2007) Flexible polyimide microelectrode array for in vivo recordings and current source density analysis. Biosens Bioelectron 22:1783–1790

    Article  Google Scholar 

  • Fontanini A, Spano P, Bower JM (2003) Ketamine-xylazine-induced slow (<1.5 Hz) oscillations in the rat piriform (olfactory) cortex are functionally correlated with respiration. J Neurosci 23:7993–8001

    Google Scholar 

  • Hassler C, Boretius T, Stieglitz T (2011) Polymers for neural implants. J Polym Sci Polym Phys 49:18–33

    Article  Google Scholar 

  • Heim M, Yvert B, Kuhn A (2012) Nanostructuration strategies to enhance microelectrode array (MEA) performance for neuronal recording and stimulation. J Physiol Paris 106:137–145

    Article  Google Scholar 

  • Kawano T, Harimoto T, Ishihara A, Takei K, Kawashima T, Usui S, Ishida M (2010) Electrical interfacing between neurons and electronics via vertically integrated sub-4 microm-diameter silicon probe arrays fabricated by vapor–liquid–solid growth. Biosens Bioelectron 25:1809–1815

    Article  Google Scholar 

  • Keene DL, Whiting S, Ventureyra EC (2000) Electrocorticography. Epileptic Disord 2:57–63

    Google Scholar 

  • Kibler AB, Jamieson BG, Durand DM (2012) A high aspect ratio microelectrode array for mapping neural activity in vitro. J Neurosci Methods 204:296–305

    Article  Google Scholar 

  • Lin C-W, Lee Y-T, Chang C-W, Hsu W-L, Chang Y-C, Fang W (2009) Novel glass microprobe arrays for neural recording. Biosens Bioelectron 25:475–481

    Article  Google Scholar 

  • Márton G, Fekete Z, Fiáth R, Baracskay P, Ulbert I, Juhász G, Battistig G, Pongrácz A (2013) In vivo measurements with robust silicon-based multielectrode arrays with extreme shaft lengths. IEEE Sens J 13:3263–3269

    Article  Google Scholar 

  • Márton G, Bakos I, Fekete Z, Ulbert I, Pongracz A (2014) Durability of high surface area platinum deposits on microelectrode arrays for acute neural recordings. J Mater Sci Mater Med 25:931–940

    Article  Google Scholar 

  • McCarthy PT, Otto KJ, Rao MP (2011) Robust penetrating microelectrodes for neural interfaces realized by titanium micromachining. Biomed Microdev 13:503–515

    Article  Google Scholar 

  • Myllymaa S, Myllymaa K, Korhonen H, Töyräs J, Jääskeläinen JE, Djupsund K, Tanila H, Lappalainen R (2009) Fabrication and testing of polyimide-based microelectrode arrays for cortical mapping of evoked potentials. Biosens Bioelectron 24:3067–3072

    Article  Google Scholar 

  • Nemani KV, Moodie KL, Brennick JB, Su A, Gimi B (2013) In vitro and in vivo evaluation of SU-8 biocompatibility. Math Sci Eng C 33:4453–4459

    Article  Google Scholar 

  • Ochoa M, Wei P, Wolley AJ, Otto KJ, Ziaie B (2013) A hybrid PDMS-Parylene subdural multi-electrode array. Biomed Microdev 15:437–443

    Article  Google Scholar 

  • Patrick E, Ordonez M, Alba N, Sanchez JC, Nishida T (2006) Design and fabrication of a flexible substrate microelectrode array for brain machine interfaces. Conf Proc IEEE Eng Med Biol Soc 1:2966–2969

    Article  Google Scholar 

  • Paxinos G, Watson C (2009) The rat brain in stereotaxic coordinates: compact, 6th edn. Academic Press, New York

    Google Scholar 

  • Pongrácz A, Fekete Z, Márton G, Bérces Z, Ulbert I, Fürjes P (2013) Deep-brain silicon multielectrodes for simultaneous in vivo neural recording and drug delivery. Sens Actuators B Chem 189:97–105

    Article  Google Scholar 

  • Rodriguez FJ, Ceballos D, Schuttler M, Valero A, Valderrama E, Stieglitz T, Navarro X (2000) Polyimide cuff electrodes for peripheral nerve stimulation. J Neurosci Methods 98:105–118

    Article  Google Scholar 

  • Rousche PJ, Pellinen DS, Pivin DP Jr, Williams JC, Vetter RJ, Kipke DR (2001) Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Trans Biomed Eng 48:361–371

    Article  Google Scholar 

  • Rousseau L, Lissorgues G, Verjus F, Yvert B (2009) Microfabrication of high-density microelectrode arrays for in vitro applications. In: Lim C, Goh JH (eds) 13th International Conference on Biomedical Engineering, pp 790–793

  • Rubehn B, Bosman C, Oostenveld R, Fries P, Stieglitz T (2009) A MEMS-based flexible multichannel ECoG-electrode array. J Neural Eng 6:1741–2560

    Article  Google Scholar 

  • Rui Y, Liu J, Wang Y, Yang C (2011) Parylene-based implantable Pt-black coated flexible 3-D hemispherical microelectrode arrays for improved neural interfaces. Microsyst Technol 17:437–442

    Article  Google Scholar 

  • Seymour JP, Langhals NB, Anderson DJ, Kipke DR (2011) Novel multi-sided, microelectrode arrays for implantable neural applications. Biomed Microdev 13:441–451

    Article  Google Scholar 

  • Steriade M, Nunez A, Amzica F (1993) A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci 13:3252–3265

    Google Scholar 

  • Stieglitz T, Beutel H, Meyer JU (1997) A flexible, light-weight multichannel sieve electrode with integrated cables for interfacing regenerating peripheral nerves. Sens Actuators A Phys 60:240–243

    Article  Google Scholar 

  • Ulbert I, Halgren E, Heit G, Karmos G (2001) Multiple microelectrode-recording system for human intracortical applications. J Neurosci Methods 106:69–79

    Article  Google Scholar 

  • Yeager JD, Phillips DJ, Rector DM, Bahr DF (2008) Characterization of flexible ECoG electrode arrays for chronic recording in awake rats. J Neurosci Methods 173:279–285

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank Mrs. Károlyné Payer, Mr. Róbert Hodován and Mr. András Lőrincz for their support in microfabrication. We are also grateful to Attila Nagy for his help with packaging. This work was funded by the Bolyai János Grant of the HAS to Anita Pongrácz and the OTKA K81354, KTIA_13_NAP-A-IV/1-2-3-6, ANR-TÉT Multisca, TAMOP-4.2.1.B-11/2/KMR-2011-0002 grants to István Ulbert.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gergely Márton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Márton, G., Kiss, M., Orbán, G. et al. A polymer-based spiky microelectrode array for electrocorticography. Microsyst Technol 21, 619–624 (2015). https://doi.org/10.1007/s00542-014-2203-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-014-2203-y

Keywords

Navigation