Skip to main content
Log in

Study on the giant magnetoimpedance effect in micro-patterned Co-based amorphous ribbons with single strip structure and tortuous shape

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Field-annealed Co-based commercial amorphous ribbons (Metglas® 2714A) with single strip structure and tortuous shape are fabricated by MEMS technology. The influence of the size, magnetic field and frequency on the giant magnetoimpedance (GMI) ratio of the ribbons with single strip structure and tortuous shape is investigated. The results show that the GMI ratio of micro-patterned Co-based amorphous ribbons with single strip structure increases with increasing in length and decreases with the increasing in width. The ribbons (length = 10 mm, width = 250 μm) with single strip can get higher GMI ratio at lower frequency (<40 MHz). The GMI ratio of micro-patterned tortuous-shaped Co-based amorphous ribbon with six turns is biggest with 82 %, obtained at a frequency of 40 MHz and a field of 20 Oe, and the GMI ratio increases with the increasing in turn number from two turns to six turns. All mechanisms (line width and tortuous shape) that influence the inductance and resistance will result in changes in the impedance and the GMI effect. The anisotropy field HK (15–20 Oe) of tortuous shape ribbon that the peak GMI ratio is larger than that (5–10 Oe) of the ribbon with single strip structure. The effect of the frequency on the GMI ratio of the ribbons with tortuous shape is more complex. This can be explanation by complex inductance of tortuous shape ribbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amalou F, Gijs MAM (2001) Giant magnetoimpedance of chemically thinned and polished magnetic amorphous ribbons. J Appl Phys 90:3466. doi:10.1063/1.1398072

    Article  Google Scholar 

  • Atalay FE, Kaya H, Atalay S (2006) Magnetoimpedance effect in electroplated NiFeRu/Cu wire. J Phys D 39:431. doi:10.1088/0022-3727/39/3/001

    Article  Google Scholar 

  • Beach RS, Berkowitz A (1994) Giant magnetic field dependent impedance of amorphous FeCoSiB wire. Appl Phys Lett 64:3652–3654. doi:10.1063/1.111170

    Article  Google Scholar 

  • Chaturvedi A, Dhakal TP, Witanachchi S, Le AT, Phan MH, Srikantha H (2010) Critical length and giant magnetoimpedance in Co69Fe4.5Ni1.5Si10B15 amorphous ribbons. Mater Sci Eng, B 172:146–150. doi:10.1016/j.mseb.2010.04.038

    Article  Google Scholar 

  • Chen L, Zhou Y, Zhou ZM, Ding W (2009a) Effect of meander structure and line width on GMI effect in micro-patterned Co-based ribbon. J Phys D 42:145005. doi:10.1088/0022-3727/42/14/145005

    Article  Google Scholar 

  • Chen L, Zhou Y, Zhou ZM, Ding W (2009b) Enhancement of magnetoimpedance effect in Co-based amorphous ribbon with a meander structure. Phys Status Solidi A 206:1594. doi:10.1002/pssa.200925024

    Article  Google Scholar 

  • Chen L, Bao CC, Yang H, Lei C, Zhou Y, Cui DX (2011) A prototype of giant magnetoimpedance-based biosensing system for targeted detection of gastric cancer cell. Biosens Bioelectron 26:3246–3253. doi:10.1016/j.bios.2010.12.034

    Article  Google Scholar 

  • Devkota J, Ruiz A, Mukherjee P, Srikanth H, Phan MH (2013) Magneto-impedance biosensor with enhanced sensitivity for highly sensitive detection of nanomag-D beads. IEEE Trans Magn 49:4060–4063. doi:10.1109/TMAG.2012.2235414

    Article  Google Scholar 

  • Devkota J, Ruiz A, Wingo J, Qin FX, Mukherjee P, Srikanth H, Phan MH (2014) Soft ferromagnetic microribbons with enhanced magnetoimpedance properties for high frequency sensor applications. Phys Express 4:10. http://www.cognizure.com/pubs

  • Jang KJ, Kim CG, Yoon SS, Yu SC (2000) Effect of annealing field on asymmetric giant magnetoimpedance profile in Co-based amorphous ribbon. J Magn Magn Mater 215–216:488–491. doi:10.1016/S0304-8853(00)00200-6

    Article  Google Scholar 

  • Kumar A, Mohapatra S, Miyar VF, Cerdeira A, Garcia JA, Srikanth H, Gass J, Kurlyandskaya GV (2007) Magnetoimpedance biosensor for Fe3O4 nanoparticle intracellular uptake evaluation. Appl Phys Lett 91:143902. doi:10.1063/1.2790370

    Article  Google Scholar 

  • Kurlyandskaya GV, Sanchez ML, Hernando B, Prida VM, Gorria P, Tejedor M (2003) Giant-magnetoimpedance-based sensitive element as a model for biosensors. Appl Phys Lett 82:3053–3055. doi:10.1063/1.1571957

    Article  Google Scholar 

  • Li XP, Zhao ZJ, Chua C, Seet HL, Lu L (2003) Enhancement of giant magnetoimpedance effect of electroplated NiFe/Cu composite wires by dc Joule annealing. J Appl Phys 94:7626. doi:10.1063/1.1628828

    Article  Google Scholar 

  • Makhnovskiy DP, Panina LV, Fry N, Mapps J (2004) Magneto-impedance in NiFe/Au/NiFe sandwich films with different types of anisotropy. J Magn Magn Mater 272–276:1866. doi:10.1016/j.jmmm.2003.12.833

    Article  Google Scholar 

  • Panina LV, Mohri K, Uchiyama T, Noda M (1995) Sensitive and quick response micro magnetic sensor utilizing magneto-impedance in Co-rich amorphous wires. IEEE Trans Magn 34:1249. doi:10.1109/20.364817

    Article  Google Scholar 

  • Phan MH, Peng HX (2008) Giant magnetoimpedance materials: fundamentals and applications. Prog Mater Sci 53:323. doi:10.1016/j.pmatsci.2007.05.003

    Article  Google Scholar 

  • Prida VM, Sánchez ML, Hernando B, Gorria P, Tejedor M, Vazquez M (2003) Influence of stress relief on hysteretic magnetoimpedance in Co-rich amorphous ribbons at the relaxation frequency. Appl Phys A 77:135–140. doi:10.1007/s00339-002-2030-3

    Article  Google Scholar 

  • Sommer RL, Chine CL (1996) Giant magneto-impedance effect in Metglas. J Appl Phys 2705M(79):5139. doi:10.1063/1.361533

    Article  Google Scholar 

  • Yang H, Chen L, Lei C, Zhang J, Li D, Zhou ZM, Bao CC, Hu HY, Chen X, Cui F, Zhang SX, Zhou Y, Cui DX (2010) Appl Phys Lett 97:043702. doi:10.1063/1.3467833

    Article  Google Scholar 

  • Yang Z, Lei J, Lei C, Zhou Y, Wang T (2014) Effect of magnetic field annealing and size on the giant magnetoimpedance in micro-patterned co-based ribbon with a meander structure. Appl Phys A 116:1847–1851. doi:10.1007/s00339-014-8343-1

    Article  Google Scholar 

  • Zhou Y, Yu JQ, Zhao XL, Cai BC (2001) Giant magnetoimpedance in layered FeSiB/Cu/FeSiB films. J Appl Phys 89:1816–1819. doi:10.1063/1.1338514

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by The National Natural Science Foundation of China (No. 61074168 and No. 61273065), National Science and Technology Support Program (2012BAK08B05), National Key Laboratory Research Fund (9140C790403110C7905), Natural Science Foundation of Shanghai (13ZR1420800) and the Analytical and Testing Center in Shanghai Jiao Tong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Lei, C., Zhou, Y. et al. Study on the giant magnetoimpedance effect in micro-patterned Co-based amorphous ribbons with single strip structure and tortuous shape. Microsyst Technol 21, 1995–2001 (2015). https://doi.org/10.1007/s00542-014-2342-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-014-2342-1

Keywords

Navigation