Skip to main content
Log in

Ectomycorrhizal and arbuscular mycorrhizal colonization of Alnus acuminata from Calilegua National Park (Argentina)

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The objective of this study was to determine patterns of ectomycorrhizas (ECM) and arbuscular mycorrhizas (AM) colonization associated with Alnus acuminata (Andean alder), in relation to soil parameters (electrical conductivity, field H2O holding capacity, pH, available P, organic matter, and total N) at two different seasons (autumn and spring). The study was conducted in natural forests of A. acuminata situated in Calilegua National Park (Jujuy, Argentina). Nine ECM morphotypes were found on A. acuminata roots. The ECM colonization was affected by seasonality and associated positively with field H2O holding capacity, pH, and total N and negatively associated with organic matter. Two morphotypes (Russula alnijorullensis and Tomentella sp. 3) showed significant differences between seasons. Positive and negative correlations were found between five morphotypes (Alnirhiza silkacea, Lactarius omphaliformis, Tomentella sp. 1, Tomentella sp. 3, and Lactarius sp.) and soil parameters (total N, pH, and P). A significant negative correlation was found between field H2O holding capacity and organic matter with AM colonization. Results of this study provide evidence that ECM and AM colonization of A. acuminata can be affected by some soil chemical edaphic parameters and indicate that some ECM morphotypes are sensitive to changes in seasonality and soil parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott LK, Robson AD (1991) Factors influencing the occurrence of vesicular–arbuscular mycorrhizas. Agric Ecosyst Environ 35:121–150

    Google Scholar 

  • Abuarghub SM, Read DJ (1988) The biology of mycorrhiza in the Ericaceae XII. Quantitative analysis of individual “free” amino acids in relation to time and depth in the soil profile. New Phytol 108:433–441

    Google Scholar 

  • Agerer R (1991) Characterization of ectomycorrhiza. In: Norris JR, Read DJ, Varma AK (eds) Techniques for the study of mycorrhiza. (Methods microbiol, vol 23). Academic, London, pp 25–73

    Google Scholar 

  • Albornoz PL (1991) Estudio micorrízico de Alnus acuminata HBK, en la Provincia de Tucumán–Argentina. Seminario de Grado. National University of Tucumán, Argentina

  • Anderson RC, Ebbers BC, Liberta AE (1984) Soil moisture influences colonization of prairie cordgrass (Spartina pectinata Lind.) by vesicular–arbuscular mycorrhizal fungi. New Phytol 102:523–527

    Google Scholar 

  • Averby AS, Ulf G (1998) Ocurrence and succession of mycorrhizas in Alnus incana. Swed J Agric Res 28:117–127

    Google Scholar 

  • Baar J (1995) Ectomycorrhizal fungi of Scots pine as affected by litter and humus. Ph.D. thesis, Wageningen, p 139

  • Baker DD, Mullin BC (1992) Actinorhizal symbioses. In: Stacy G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 259–292

    Google Scholar 

  • Becerra AG (2002) Influencia de los suelos Ustorthentes sobre las ectomicorrizas y endomicorrizas en Alnus acuminata H.B.K. Master thesis, University of Buenos Aires, Argentina

  • Becerra A, Daniele G, Domínguez L, Nouhra E, Horton T (2002) Ectomycorrhizae between Alnus acuminata H.B.K. and Naucoria escharoides (Fr.:Fr.) Kummer from Argentina. Mycorrhiza 12:61–66

    Google Scholar 

  • Becerra A, Nouhra E, Daniele G, Domínguez L, McKay D (2005a) Ectomycorrhizas of Cortinarius helodes and Gyrodon monticola with Alnus acuminata from Argentina. Mycorrhiza 15:7–15

    Google Scholar 

  • Becerra A, Pritsch K, Arrigo N, Palma M, Bartoloni N (2005b) Ectomycorrhizal colonization of Alnus acuminata kunth in northwestern Argentina in relation to season and soil parameters. Ann For Sci 62:325–332

    Google Scholar 

  • Beddiar A (1984) Les posibilites d’ associations symbiotiques de l’ aulne glutineux (Alnus glutinosa L. Gaertn.) dans divers soils de l’ est de la France. D.E.A. de Biologie et Physiologie végétales. Université de Nancy I. Institut national de la Recherche Agronomique, pp 1–47

  • Bowen GD (1970) Effects of soil temperatures on root growth and on phosphate uptake along Pinus radiata roots. Aust J Soil Res 8:31–42

    Google Scholar 

  • Bowen GD (1987) Infection processes in plants—development of vesicular arbuscular mycorrhizae. In: Safir GR (ed) Ecophysiology of VA mycorrhizal plants. CRC Press, Boca Raton, FL, pp 27–58

    Google Scholar 

  • Bower CA, Wilcox LW (1965) Soluble salts. In: Black CA (ed) Methods in soil analysis: agronomy. American Society of Agronomy, Madison, WI, pp 933–951

    Google Scholar 

  • Brundett M (1991) Mycorrhizas in natural ecosystems. Adv Ecol Res 21:171–262

    Google Scholar 

  • Brundrett MN, Kendrick B (1990) The roots and mycorrhizae of herbaceous woodland plants. I. Quantitative aspects of morphology. New Phytol 114:457–468

    Google Scholar 

  • Cade-Menun BJ, Berch SM, Bomke AA (1991) Seasonal colonization of winter wheat in South Coastal British Columbia by vesicular–arbuscular mycorrhizal fungi. Can J Bot 69:78–86

    Google Scholar 

  • Cervantes E, Rodríguez Barrueco C (1992) Relationships between the mycorrhizal and actinorhizal symbioses in non-legumes. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology: techniques for the study of mycorrhiza. Academic Press, London, pp 417–432

    Google Scholar 

  • Chatarpaul L, Chakravarty P, Subramaniam P (1989) Studies in tretrapartite symbioses. I. Role of ecto- and endomycorrhizal fungi and Frankia on the growth performance of Alnus incana. Plant Soil 118:145–150

    Google Scholar 

  • Daft MJ (1983) The influence of mixed inocula on endomycorrhizal development. Plant Soil 73:331–337

    Google Scholar 

  • Dahlberg A, Jonsson L, Nylund JE (1997) Species diversity and distribution of biomass above and below ground among ectomycorrhizal fungi in an old-growth Norway spruce forest in south Sweden. Can J Bot 75:1323–1335

    Google Scholar 

  • Dames JF, Straker CJ, Scholes MC (1999) Ecological and anatomical characterization of some Pinus patula ectomycorrhizas from Mpumalanga, South Africa. Mycorrhiza 9:9–24

    Google Scholar 

  • Daniels BA, Trappe JM (1980) Factors affecting spore germination of the vesicular–arbuscular mycorrhizal fungus, Glomus epigaeus. Mycologia 72:457–471

    Google Scholar 

  • Danielson RM, Visser S (1989) Effects of forest soil acidification on ectomycorrhizal and vesicular–arbuscular mycorrhizal development. New Phytol 112:41–47

    Google Scholar 

  • Dawson JO (1990) Interactions among actinorhizal and associated plant species. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. Academic, San Diego, CA, pp 299–316

    Google Scholar 

  • Eissenstat DM, Graham JH, Syvertsen JP, Drouillard DL (1993) Carbon economy of sour orange in relation to mycorrhizal colonization and phosphorous status. Ann Bot 71:1–10

    Google Scholar 

  • El Karkouri K, Martin F, Mousain D (2002) Dominance of the mycorrhizal fungus Rhizopogon rubescens in a plantation of Pinus pinea seedlings inoculated with Suillus collinitus. Ann For Sci 59:197–204

    Google Scholar 

  • Erland S, Söderström B (1990) Effects of liming on ectomycorrhizal fungi infecting Pinus sylvestris. I. Mycorrhizal infection in limed humus in the laboratory, and isolation of fungi from mycorrhizal roots. New Phytol 115:675–682

    Google Scholar 

  • Erland S, Taylor FS (2002) Diversity of Ecto-mycorrhizal fungal communities in relation to the abiotic environment. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin Heidelberg New York, pp 163–200

    Google Scholar 

  • Gehring CA, Whitham TG (1994) Comparisons of ectomycorrhizae on pinyon pines (Pinus edulis; Pinaceae) across extremes of soil type and herbivory. Am J Bot 81:1509–1516

    Google Scholar 

  • Grace C, Stribley DP (1991) A safer procedure for routine staining of vesicular arbuscular mycorrhizal fungi. Mycol Res 95:1160–1162

    Google Scholar 

  • Grau A (1985) La expansión del aliso del cerro (Alnus acuminata H.B.K. subsp. acuminata) en el noroeste de Argentina. Lilloa 36:237–247

    Google Scholar 

  • Hall RB, McNabb HS, Maynard CA, Green TL (1979) Toward development of optimal Alnus glutinosa symbioses. Bot Gaz 140:120–126

    Google Scholar 

  • Halloy S (1991) South American pioneer. Grow Today 4:22–24

    Google Scholar 

  • Hamel C, Dalpé Y, Furlan V, Parent S (1997) Indigenous populations of arbuscular mycorrhizal fungi and soil aggregate stability are major determinants of leek (Allium porrum L.) response to inoculation with Glomus intraradices Schenk & Smith or Glomus versiforme (Karsten) Berch. Mycorrhiza 7:187–196

    Google Scholar 

  • Harvey AE, Jurgensen MF, Larsen MJ (1978) Seasonal distribution of ectomycorrhizae in a mature Douglas-fir/Larch forest soil in western Montana. For Sci 24:203–208

    Google Scholar 

  • Harvey AE, Larsen MJ, Jurgensen MF, Schlieter JA (1986) Distribution of active ectomycorrhizal short roots in forest soils of the Island Northwest: effects of site and disturbance. General Technical Report INT-374. Intermountain Research Station, USDA Forest Service, Ogden, UT, p 8

    Google Scholar 

  • Hayman DS, Barea JM, Azcón R (1976) Vesicular–arbuscular mycorrhiza in southern Spain: its distribution in crops growing in soil of different fertility. Phytopathol Mediterr 15:1–6

    Google Scholar 

  • Helm DJ, Allen EB, Trappe JM (1996) Mycorrhizal chronosequence near Exit Glacier, Alaska. Can J Bot 74:1496–1506

    Google Scholar 

  • Helm DJ, Allen EB, Trappe JM (1999) Plant growth and ectomycorrhiza formation by transplants on deglaciated land near Exit Glacier, Alaska. Mycorrhiza 8:297–304

    Google Scholar 

  • Horton TR, Bruns TD (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Mol Ecol 10:1855–1871

    Google Scholar 

  • Jackson ML (1964) Análisis químico de suelos. Omega (ed), Barcelona, Spain

  • Jonsson L, Dahlberg A, Nilsson MC, Zackrisson O, Karén O (1999) Ectomycorrhizal fungal communities in late-succession at Swedish boreal forest, and their composition following wildfire. Mol Ecol 8:205–215

    Google Scholar 

  • Kahn AG (1972) The effect of vesicular–arbuscular mycorrhizal associations on growth of cereals. I. Effects on maize growth. New Phytol 71:613–619

    Google Scholar 

  • Koske RE, Tessier B (1983) A convenient, permanent slide mounting medium. Newslett Mycol Soc Am 34:59

    Google Scholar 

  • Lanzac AR, Martin A, Roldan A (1995) Mycorrhizal colonization and drought interactions of Mediterranean shrubs under greenhouse conditions. Arid Soil Res Rehabil 9:167–175

    Google Scholar 

  • Leake JR, Read DJ (1997) Mycorrhizal fungi in terrestrial habitats. In: Wicklow DT, Söderström B (eds) The Mycota V. Environmental and microbial relationships. Springer, Berlin Heidelberg New York, pp 281–301

    Google Scholar 

  • Lee KJ (1981) Correlation between ectomycorrhizal formation in Pinus and organic matter, nitrogen, phosphorus contents and acidity in the forest soil. In: Proceedings, 17th IUFRO Congress, IUFRO Congress Comm., Kyoto, pp 83–87

  • Lilleskov EA, Fahey TJ, Lovett GM (2001) Ectomycorrhizal fungal aboveground community change over an atmospheric nitrogen deposition gradient. Ecol Appl 11:397–410

    Google Scholar 

  • Lilleskov EA, Fahey TJ, Horton TR, Lovett GM (2002) Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology 83:104–115

    Google Scholar 

  • Linderman RG (1997) Vesicular–arbuscular mycorrhizal (VAM) fungi. In: Carroll GC, Tudzynski P (eds) The Mycota V. Environmental and microbial relationships. Springer, Berlin Heidelberg New York, pp 117–128

    Google Scholar 

  • Marks GC, Kozlowski TT (1973) Ectomycorrhizae. Academic, New York

    Google Scholar 

  • Marx DH, Bryan WC, Davey CB (1970) Influence of temperature on aseptic synthesis of ectomycorrhizae by Thelephora terrestris and Pisolithus tinctorius on loblolly pine. For Sci 16:431–434

    Google Scholar 

  • Marx DH, Hatch AB, Mendicino JF (1977) High soil fertility decreases sucrose content and susceptibility of loblolly pine roots of ectomycorrhizal infection by Pisolithus tinctorius. Can J Bot 55:1569–1574

    Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A method which gives an objective measure of colonization of roots by vesicular–arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Google Scholar 

  • Mejstrik J (1965) Study of the development of endotrophic mycorrhiza in the association of Cladietum marisci. In: Macura J, Vancura V (eds) Plant microbe relationships. Czech Acad Sci Prague, pp 283–290

  • Mejstrik J (1973) Advances in the study of vesicular–arbuscular mycorrhiza. Annu Rev Phytopathol 11:171–196

    Google Scholar 

  • Mejstrik V, Dominik T (1969) The ecological distribution of mycorrhiza of beech. New Phytol 68:689–700

    Google Scholar 

  • Michelsen A, Schmidt IK, Jonasson S, Dighton J, Jones HE, Callagahan TV (1995) Inhibition of growth and effects on nutrient uptake of arctic graminoids by leaf extracts: allelopathy or resource competition between plants and microbes? Oecologia 103:407–418

    Google Scholar 

  • Miller SL, Koo CD, Molina R (1991) Characterization of red alder ectomycorrhizae: a preface to monitoring belowground ecological responses. Can J Bot 69:516–531

    Google Scholar 

  • Miller SL, Koo CD, Molina R (1992) Early colonization of red alder and Douglas-fir by ectomycorrhizal fungi and Frankia in soils from the Oregon coast range. Mycorrhiza 2:53–61

    Google Scholar 

  • Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbiosis: community-ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning: an integrated plant–fungal process. Chapman and Hall, pp 357–423

  • Moyersoen B, Becker P, Alexander IJ (2001) Are ectomycorrhizas more abundant than arbuscular mycorrhizas in tropical heath forest? New Phytol 150:591–599

    Google Scholar 

  • Nadarajah P, Nawawi A (1987) Effect of temperature on germination and growth of vesicular arbuscular mycorrhizal fungi. In: Sylvia DM, Hung LL, Graham JH (eds) Mycorrhizae in the next decade, practical applications and research properties. 7th NACOM. Institute of Food Agriculture Science, University of Florida, Gainsville, FL, p 214

    Google Scholar 

  • Nelson DW, Sommers LE (1982) Total carbon, organic carbon, and organic matter. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Part 2. American Society of Agronomy, Madison, WI, pp 639–577

    Google Scholar 

  • Nilsen P, Borja I, Knutsen H, Brean R (1998) Nitrogen and drought effects on ectomycorrhizae of Norway spruce (Picea abies L. (Karst.)). Plant Soil 198:179–184

    Google Scholar 

  • Ogawa M (1985) Ecological characters of ectomycorrhizal fungi and their mycorrhizae. An introduction to the ecology of higher fungi. Jpn Agric Res Q 18:305–314

    Google Scholar 

  • Paul EA, Clark FE (1996) Soil microbiology and biochemistry. Academic, San Diego, CA

    Google Scholar 

  • Pearson JN, Jakobsen I (1993) Symbiotic exchange of carbon and phosphorus between cucumber and three arbuscular mycorrhizal fungi. New Phytol 124:481–488

    Google Scholar 

  • Peech M (1965) Hydrogen-ion activity. In: Black CA (ed) Methods in soil analysis: agronomy. Am. Soc. Agron., Inc., Madison, WI, pp 87–101

    Google Scholar 

  • Pritsch K, Boyle H, Munch JC, Buscot F (1997a) Characterization and identification of black alder ectomycorrhizas by PCR/RFLP analyses of the rDNA internal transcribed spacer (ITS). New Phytol 137:357–369

    Google Scholar 

  • Pritsch K, Munch JC, Buscot F (1997b) Morphological and anatomical characterisation of black alder Alnus glutinosa (L.) Gaertn. ectomycorrhizas. Mycorrhiza 7:201–216

    Google Scholar 

  • Ramadori ED, Reca AR, Tudica CA, Pujallte JC (1996) Parque Nacional de Calilegua, Regionalización, Ecología y descripción de su Ecotono. APN

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–391

    Google Scholar 

  • Read DJ, Boyd R (1986) Water relations of mycorrhizal fungi and their host plants. In: Ayres PG, Boddy L (eds) Water, fungi and plants. British Mycological Society Symposium, vol 11. Cambridge University Press, Cambridge, pp 287–303

    Google Scholar 

  • Redhead JF (1971) Endogone and endotrophic mycorrhizae in Nigeria. XV IUFRO Congress, Gainesville, p 25

  • Rose SL (1980) Mycorrhizal associations of some actinomycete nodulated nitrogen-fixing plants. Can J Bot 58:1449–1454

    Google Scholar 

  • Rosendahl S, Sen R, Hepper CM, Azcón-Aguilar C (1989) Quantification of three vesicular–arbuscular mycorrhizal fungi Glomus spp. in roots of leek Allium porum on the basis of activity of diagnostic enzymes after polyacrylamide gel electrhophoresis. Soil Biol Biochem 21:519–522

    Google Scholar 

  • Sanders IR (1993) Temporal infectivity and specificity of vesicular–arbuscular mycorrhizas in co-existing grassland species. Oecologia 93:349–355

    Google Scholar 

  • Sanders IR, Fitter AH (1992) The ecology and functioning of vesicular–arbuscular mycorrhizas in co-existing grassland species. I. Seasonal patterns of mycorrhizal occurrence and morphology. New Phytol 120:517–524

    Google Scholar 

  • Slankis V (1974) Soil factors influencing formation of mycorrhizae. Annu Rev Phytopathol 12:437–457

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, London

    Google Scholar 

  • StatSoft Inc. (1995) Statistica for Windows, Tulsa, OK: StatSoft, Inc., 2003 East 14th Street, Tulsa, OK

  • Swaty RL, Gehring CA, Van Ert M, Theimer TC, Keim P, Whitman TG (1998) Temporal variation in temperature and rainfall differentially affects ectomycorrhizal colonization at two contrasting sites. New Phytol 139:733–739

    Google Scholar 

  • Sylvia DM, Schenk NC (1983) Germination of chlamydospores of three Glomus species as affected by soil matric potential and fungal contamination. Mycologia 75:30–35

    Google Scholar 

  • Taylor DL, Bruns TD (1999) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: minimal overlap between the mature forest and resistant propagule communities. Mol Ecol 8:1837–1850

    Google Scholar 

  • Theodorou C, Bowen GD (1971) Influence of temperature on the mycorrhizal associations of Pinus radiata D. Don. Aust J Bot 19:13–20

    Google Scholar 

  • Tommerup IC (1983) Temperature relations of spore germination and hyphal growth of vesicular–arbuscular mycorrhizal fungi in soil. Trans Br Mycol Soc 81:37–45

    Google Scholar 

  • Trappe JM (1962) Fungus associates of ectotrophic mycorrhizae. Bot Rev 28:538–606

    Google Scholar 

  • Trappe JM, Fogel RD (1977) Ecosystematic functions of mycorrhizae. Colo State Univ Range Sci Dep Sci Ser 26:205–214

    Google Scholar 

  • Trinick MJ (1977) Vesicular–arbuscular infection and soil phosphorus utilization in Lupinus spp. New Phytol 78:297–304

    Google Scholar 

  • Vargas Gil JR, Bianchi AR (1981) Regiones Naturales del NOA. Memoria Anual de Información Técnica para productores. INTA, Salta

    Google Scholar 

  • Veihmeyer FJ, Hendrickson AH (1931) The moisture equivalent as a measure of the field capacity of soils. Soil Sci 181–194

  • Wallander H (1995) A new hypothesis to explain allocation of dry matter between mycorrhizal fungi and pine seedlings in relation to nutrient supply. Plant Soil 169:243–248

    Google Scholar 

  • Wilson JM (1984) Comparative development of infection by three vesicular–arbuscular mycorrhizal fungi. New Phytol 97:413–426

    Google Scholar 

  • Wilson JM, Tommerup IC (1992) Interactions between fungal symbionts: VA mycorrhizae. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant fungal process. Chapman and Hall, London, pp 199–248

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by funding from PROYUNGAS (1999, 2001) to A.B. A.B. is grateful to FOMEC and CONICET for the fellowship provided. M.R.Z. is grateful to CONICET for the fellowship provided. This project was also supported in part from the US Forest Service and the NRI Competitive Grants Program/USDA award 99-35107-7843 to T.R.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandra Becerra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becerra, A., Zak, M.R., Horton, T.R. et al. Ectomycorrhizal and arbuscular mycorrhizal colonization of Alnus acuminata from Calilegua National Park (Argentina). Mycorrhiza 15, 525–531 (2005). https://doi.org/10.1007/s00572-005-0360-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-005-0360-7

Keywords

Navigation